Zijian Liu , Jiaqi Han , Shitong Su , Qiwen Zeng , Zhenru Wu , Jingsheng Yuan , Jian Yang
{"title":"Histone lactylation facilitates MCM7 expression to maintain stemness and radio-resistance in hepatocellular carcinoma","authors":"Zijian Liu , Jiaqi Han , Shitong Su , Qiwen Zeng , Zhenru Wu , Jingsheng Yuan , Jian Yang","doi":"10.1016/j.bcp.2025.116887","DOIUrl":null,"url":null,"abstract":"<div><div>Cancer stem cells (CSCs) play an essential role in tumor initiation and therapy resistance. Histone lactylation as a novel epigenetic modification could regulate the gene transcription process during tumor progression. Nevertheless, researches have not well examined its role in maintaining CSC properties. Our study identified Minichromosome maintenance complex component 7 (MCM7) as a candidate gene in Hepatocellular carcinoma (HCC) with diagnostic and prognostic values, and Real-time quantitative PCR (qRT-PCR), Western blot (WB), and Immunohistochemistry <strong>(</strong>IHC) assays ascertained its obviously higher expressions in HCC cells and tissues. Ectopic of MCM7 could increase the expression of CSC-related genes and enhance spheroid both in size and in number. Suppression of MCM7 could strengthen the efficacy of radiotherapy verified by Cell counting kit-8 <strong>(</strong>CCK-8) and colony formation assays. The subcutaneous xenograft model indicated that suppression of MCM7 could inhibit CSC properties and the efficacy of radiotherapy in vivo. Mechanistically, histone lactylation could facilitate MCM7 expression, and both messenger RNA (mRNA) and protein level of MCM7 expression presented an obvious decrease due to 2-DG (glycolysis inhibitor) treatment and an obvious increase due to Rotenone (glycolysis activator) treatment. Rescue experiments verified that histone lactylation was necessary for MCM7 to promote CSC properties and radio-resistance in HCC. Arsenic trioxide (ATO) targeting MCM7 could inhibit the CSC phenotypes and enhance the efficacy of radiotherapy in vivo and in vitro. Collectively, histone lactylation could transcriptionally activate MCM7 to accelerate proliferation and radio-resistance through enhancing CSC properties. ATO targeting MCM7 could inhibit CSCs phenotypes and synergistically increase the efficacy of radiation therapy.</div></div>","PeriodicalId":8806,"journal":{"name":"Biochemical pharmacology","volume":"236 ","pages":"Article 116887"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical pharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006295225001492","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Cancer stem cells (CSCs) play an essential role in tumor initiation and therapy resistance. Histone lactylation as a novel epigenetic modification could regulate the gene transcription process during tumor progression. Nevertheless, researches have not well examined its role in maintaining CSC properties. Our study identified Minichromosome maintenance complex component 7 (MCM7) as a candidate gene in Hepatocellular carcinoma (HCC) with diagnostic and prognostic values, and Real-time quantitative PCR (qRT-PCR), Western blot (WB), and Immunohistochemistry (IHC) assays ascertained its obviously higher expressions in HCC cells and tissues. Ectopic of MCM7 could increase the expression of CSC-related genes and enhance spheroid both in size and in number. Suppression of MCM7 could strengthen the efficacy of radiotherapy verified by Cell counting kit-8 (CCK-8) and colony formation assays. The subcutaneous xenograft model indicated that suppression of MCM7 could inhibit CSC properties and the efficacy of radiotherapy in vivo. Mechanistically, histone lactylation could facilitate MCM7 expression, and both messenger RNA (mRNA) and protein level of MCM7 expression presented an obvious decrease due to 2-DG (glycolysis inhibitor) treatment and an obvious increase due to Rotenone (glycolysis activator) treatment. Rescue experiments verified that histone lactylation was necessary for MCM7 to promote CSC properties and radio-resistance in HCC. Arsenic trioxide (ATO) targeting MCM7 could inhibit the CSC phenotypes and enhance the efficacy of radiotherapy in vivo and in vitro. Collectively, histone lactylation could transcriptionally activate MCM7 to accelerate proliferation and radio-resistance through enhancing CSC properties. ATO targeting MCM7 could inhibit CSCs phenotypes and synergistically increase the efficacy of radiation therapy.
期刊介绍:
Biochemical Pharmacology publishes original research findings, Commentaries and review articles related to the elucidation of cellular and tissue function(s) at the biochemical and molecular levels, the modification of cellular phenotype(s) by genetic, transcriptional/translational or drug/compound-induced modifications, as well as the pharmacodynamics and pharmacokinetics of xenobiotics and drugs, the latter including both small molecules and biologics.
The journal''s target audience includes scientists engaged in the identification and study of the mechanisms of action of xenobiotics, biologics and drugs and in the drug discovery and development process.
All areas of cellular biology and cellular, tissue/organ and whole animal pharmacology fall within the scope of the journal. Drug classes covered include anti-infectives, anti-inflammatory agents, chemotherapeutics, cardiovascular, endocrinological, immunological, metabolic, neurological and psychiatric drugs, as well as research on drug metabolism and kinetics. While medicinal chemistry is a topic of complimentary interest, manuscripts in this area must contain sufficient biological data to characterize pharmacologically the compounds reported. Submissions describing work focused predominately on chemical synthesis and molecular modeling will not be considered for review.
While particular emphasis is placed on reporting the results of molecular and biochemical studies, research involving the use of tissue and animal models of human pathophysiology and toxicology is of interest to the extent that it helps define drug mechanisms of action, safety and efficacy.