Shilpa Taneja, Khushi Sharma, Pravinkumar Selvam, S K Ashok Kumar, Govindhan Thiruppathi, Palanisamy Sundararaj, Selva Kumar Ramasamy
{"title":"Highly Potent Fluorenone Azine-based ESIPT Active Fluorophores for Cellular Viscosity Detection and Bioimaging Applications.","authors":"Shilpa Taneja, Khushi Sharma, Pravinkumar Selvam, S K Ashok Kumar, Govindhan Thiruppathi, Palanisamy Sundararaj, Selva Kumar Ramasamy","doi":"10.1007/s10895-024-04029-5","DOIUrl":null,"url":null,"abstract":"<p><p>Herein, synthesizes of fluorenone azine-based Schiff fluorescence probes: (E)-2-(((9H-fluoren-9-ylidene)hydrazineylidene)methyl)-5-(diethylamino)phenol (3a), (E)-9-(((9H-fluoren-9-ylidene)hydrazineylidene) methyl)-2,3,6,7-tetrahydro-1H,5H-pyrido[3,2,1-ij]quinolin-8-ol (3b), and (E)-1-(((9H-fluoren-9-ylidene)hydrazineylidene)methyl) naphthalen-2-ol (3c). The probes were structurally characterized using Fourier-transform infrared spectroscopy (FTIR), <sup>1</sup>H and <sup>13</sup>C nuclear magnetic resonance (NMR) spectroscopy and high-resolution mass spectrometry (HRMS) analysis. The probes exhibit hydrogen bonding between phenolic -OH and imine nitrogen, enabling excited state intramolecular proton transfer (ESIPT) and free rotation in the azine (> C = N-N = C <) functional, facilitating twisted intramolecular charge transfer (TICT), and a positive solvatochromism in solvent-dependent emission studies. Further, density functional theory (DFT) based calculations accounted for the observed photophysical TICT and ESIPT processes, revealing a non-covalent interaction between phenolic -OH and imine nitrogen. Furthermore, the fluorescence intensity (log I) showed good linearity (R<sup>2</sup> = 0.999) with the viscosity (log η) with Förster-Hoffmann coefficient (X) values of 2.238, 1.405 and 3.121 for 3a, 3b and 3c, respectively. The study established the probes toxicity and fluorescence imaging in the Caenorhabditis elegans model. Probe 3a, the first azine-based probe for micro viscosity detection, demonstrated exceptional efficacy in detecting intercellular viscosity and facilitating bioimaging applications.</p>","PeriodicalId":15800,"journal":{"name":"Journal of Fluorescence","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Fluorescence","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s10895-024-04029-5","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Herein, synthesizes of fluorenone azine-based Schiff fluorescence probes: (E)-2-(((9H-fluoren-9-ylidene)hydrazineylidene)methyl)-5-(diethylamino)phenol (3a), (E)-9-(((9H-fluoren-9-ylidene)hydrazineylidene) methyl)-2,3,6,7-tetrahydro-1H,5H-pyrido[3,2,1-ij]quinolin-8-ol (3b), and (E)-1-(((9H-fluoren-9-ylidene)hydrazineylidene)methyl) naphthalen-2-ol (3c). The probes were structurally characterized using Fourier-transform infrared spectroscopy (FTIR), 1H and 13C nuclear magnetic resonance (NMR) spectroscopy and high-resolution mass spectrometry (HRMS) analysis. The probes exhibit hydrogen bonding between phenolic -OH and imine nitrogen, enabling excited state intramolecular proton transfer (ESIPT) and free rotation in the azine (> C = N-N = C <) functional, facilitating twisted intramolecular charge transfer (TICT), and a positive solvatochromism in solvent-dependent emission studies. Further, density functional theory (DFT) based calculations accounted for the observed photophysical TICT and ESIPT processes, revealing a non-covalent interaction between phenolic -OH and imine nitrogen. Furthermore, the fluorescence intensity (log I) showed good linearity (R2 = 0.999) with the viscosity (log η) with Förster-Hoffmann coefficient (X) values of 2.238, 1.405 and 3.121 for 3a, 3b and 3c, respectively. The study established the probes toxicity and fluorescence imaging in the Caenorhabditis elegans model. Probe 3a, the first azine-based probe for micro viscosity detection, demonstrated exceptional efficacy in detecting intercellular viscosity and facilitating bioimaging applications.
期刊介绍:
Journal of Fluorescence is an international forum for the publication of peer-reviewed original articles that advance the practice of this established spectroscopic technique. Topics covered include advances in theory/and or data analysis, studies of the photophysics of aromatic molecules, solvent, and environmental effects, development of stationary or time-resolved measurements, advances in fluorescence microscopy, imaging, photobleaching/recovery measurements, and/or phosphorescence for studies of cell biology, chemical biology and the advanced uses of fluorescence in flow cytometry/analysis, immunology, high throughput screening/drug discovery, DNA sequencing/arrays, genomics and proteomics. Typical applications might include studies of macromolecular dynamics and conformation, intracellular chemistry, and gene expression. The journal also publishes papers that describe the synthesis and characterization of new fluorophores, particularly those displaying unique sensitivities and/or optical properties. In addition to original articles, the Journal also publishes reviews, rapid communications, short communications, letters to the editor, topical news articles, and technical and design notes.