Ian S Acuña-Rodríguez, Gabriel I Ballesteros, Pedro E Gundel, Eduardo Castro-Nallar, Andrea Barrera, Fernando Carrasco-Urra, Marco A Molina-Montenegro
{"title":"Fungal endophyte symbionts enhance plant adaptation in Antarctic habitats.","authors":"Ian S Acuña-Rodríguez, Gabriel I Ballesteros, Pedro E Gundel, Eduardo Castro-Nallar, Andrea Barrera, Fernando Carrasco-Urra, Marco A Molina-Montenegro","doi":"10.1111/ppl.14589","DOIUrl":null,"url":null,"abstract":"<p><p>Despite their genetic adaptation to local conditions, plants often achieve ecological success through symbiotic associations with fungal endophytes. However, the habitat-specific functionality of these interactions and their potential to drive plant adaptation to new environments remain uncertain. In this study, we tested this using the vascular flora of the Antarctic tundra (Colobanthus quitensis and Deschampsia antarctica), an extreme environment where fungal endophytes are known for playing important ecological roles. After characterizing the root-associated fungal endophyte communities of both species in two distinct Antarctic terrestrial habitats-hill and coast-we experimentally assessed the contribution of fungal endophytes to plant adaptation in each habitat. The field reciprocal transplant experiment involved removing endophytes from a set of plants and crossing symbiotic status (with and without endophytes) with habitat for both species, aiming to assess plant performance and fitness. The diversity of root fungal endophytes was similar between habitats and mainly explained by plant species, although habitat-specific endophyte community structures were identified in D. antarctica. Endophytes significantly influenced C. quitensis homeostatic regulation, including oxidative stress and osmotic control, as well as plant fitness in both environments. By contrast, the effect of endophytes on D. antarctica was particularly evident in coastal sites, suggesting an endophyte-mediated improvement in local adaptation. Altogether, our results suggest that the two Antarctic vascular plant species follow different strategies in recruiting and developing functional symbiosis with root-associated fungal communities. While C. quitensis is more generalist, D. antarctica establishes specific interactions with habitat-specific microbial symbionts, predominantly in the most stressful environmental context.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"176 6","pages":"e14589"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.14589","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Despite their genetic adaptation to local conditions, plants often achieve ecological success through symbiotic associations with fungal endophytes. However, the habitat-specific functionality of these interactions and their potential to drive plant adaptation to new environments remain uncertain. In this study, we tested this using the vascular flora of the Antarctic tundra (Colobanthus quitensis and Deschampsia antarctica), an extreme environment where fungal endophytes are known for playing important ecological roles. After characterizing the root-associated fungal endophyte communities of both species in two distinct Antarctic terrestrial habitats-hill and coast-we experimentally assessed the contribution of fungal endophytes to plant adaptation in each habitat. The field reciprocal transplant experiment involved removing endophytes from a set of plants and crossing symbiotic status (with and without endophytes) with habitat for both species, aiming to assess plant performance and fitness. The diversity of root fungal endophytes was similar between habitats and mainly explained by plant species, although habitat-specific endophyte community structures were identified in D. antarctica. Endophytes significantly influenced C. quitensis homeostatic regulation, including oxidative stress and osmotic control, as well as plant fitness in both environments. By contrast, the effect of endophytes on D. antarctica was particularly evident in coastal sites, suggesting an endophyte-mediated improvement in local adaptation. Altogether, our results suggest that the two Antarctic vascular plant species follow different strategies in recruiting and developing functional symbiosis with root-associated fungal communities. While C. quitensis is more generalist, D. antarctica establishes specific interactions with habitat-specific microbial symbionts, predominantly in the most stressful environmental context.
期刊介绍:
Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.