Daniel Kiss-Bodolay, Abdullah Al Awadhi, Karl-Olof Lövblad, Shahan Momjian, Jozsef Zoltan Kiss, Karl Schaller
{"title":"The Fork sign: a new cortical landmark in the human brain.","authors":"Daniel Kiss-Bodolay, Abdullah Al Awadhi, Karl-Olof Lövblad, Shahan Momjian, Jozsef Zoltan Kiss, Karl Schaller","doi":"10.1093/braincomms/fcae398","DOIUrl":null,"url":null,"abstract":"<p><p>In the cerebral cortex, establishing the precise relationship between functional areas and the macroscopic anatomy of gyri and sulci has a paramount importance for the field of neuroimaging and neurosurgical interventions. The anatomical orientation should start with the identification of anatomical landmarks to set the anatomo-functional boundaries. The human central sulcus region stands out as a well-defined structural and functional unit housing the primary motor and sensory cortices and is considered as key region to be identified during brain surgery. While useful anatomical landmarks have been discovered, especially in the axial plane, the identification of this region in the sagittal plane remains sometimes difficult. Using cadaveric whole brains and multi-modal analysis of MRI brain scans, we systematically observed a tuning fork-shaped sulco-gyral configuration centred around the gyral continuum bridging the pre-central gyrus with the middle frontal gyrus. We provide evidence that this 'Fork sign' is a consistent morphological feature visible on the lateral surface of the brain and a reliable radioanatomical landmark for identifying central sulcus region structures on sagittal MRI images, including the motor hand area.</p>","PeriodicalId":93915,"journal":{"name":"Brain communications","volume":"6 6","pages":"fcae398"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11576098/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/braincomms/fcae398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In the cerebral cortex, establishing the precise relationship between functional areas and the macroscopic anatomy of gyri and sulci has a paramount importance for the field of neuroimaging and neurosurgical interventions. The anatomical orientation should start with the identification of anatomical landmarks to set the anatomo-functional boundaries. The human central sulcus region stands out as a well-defined structural and functional unit housing the primary motor and sensory cortices and is considered as key region to be identified during brain surgery. While useful anatomical landmarks have been discovered, especially in the axial plane, the identification of this region in the sagittal plane remains sometimes difficult. Using cadaveric whole brains and multi-modal analysis of MRI brain scans, we systematically observed a tuning fork-shaped sulco-gyral configuration centred around the gyral continuum bridging the pre-central gyrus with the middle frontal gyrus. We provide evidence that this 'Fork sign' is a consistent morphological feature visible on the lateral surface of the brain and a reliable radioanatomical landmark for identifying central sulcus region structures on sagittal MRI images, including the motor hand area.