Joo Hee Jeong, Sora Kang, Hak Seung Lee, Min Sung Lee, Jeong Min Son, Joon-Myung Kwon, Hyoung Seok Lee, Yun Young Choi, So Ree Kim, Dong-Hyuk Cho, Yun Gi Kim, Mi-Na Kim, Jaemin Shim, Seong-Mi Park, Young-Hoon Kim, Jong-Il Choi
{"title":"Deep learning algorithm for predicting left ventricular systolic dysfunction in atrial fibrillation with rapid ventricular response.","authors":"Joo Hee Jeong, Sora Kang, Hak Seung Lee, Min Sung Lee, Jeong Min Son, Joon-Myung Kwon, Hyoung Seok Lee, Yun Young Choi, So Ree Kim, Dong-Hyuk Cho, Yun Gi Kim, Mi-Na Kim, Jaemin Shim, Seong-Mi Park, Young-Hoon Kim, Jong-Il Choi","doi":"10.1093/ehjdh/ztae062","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Although evaluation of left ventricular ejection fraction (LVEF) is crucial for deciding the rate control strategy in patients with atrial fibrillation (AF), real-time assessment of LVEF is limited in outpatient settings. We aimed to investigate the performance of artificial intelligence-based algorithms in predicting LV systolic dysfunction (LVSD) in patients with AF and rapid ventricular response (RVR).</p><p><strong>Methods and results: </strong>This study is an external validation of a pre-existing deep learning algorithm based on residual neural network architecture. Data were obtained from a prospective cohort of AF with RVR at a single centre between 2018 and 2023. Primary outcome was the detection of LVSD, defined as a LVEF ≤ 40%, assessed using 12-lead electrocardiography (ECG). Secondary outcome involved predicting LVSD using 1-lead ECG (Lead I). Among 423 patients, 241 with available echocardiography data within 2 months were evaluated, of whom 54 (22.4%) were confirmed to have LVSD. Deep learning algorithm demonstrated fair performance in predicting LVSD [area under the curve (AUC) 0.78]. Negative predictive value for excluding LVSD was 0.88. Deep learning algorithm resulted competent performance in predicting LVSD compared with N-terminal prohormone of brain natriuretic peptide (AUC 0.78 vs. 0.70, <i>P</i> = 0.12). Predictive performance of the deep learning algorithm was lower in Lead I (AUC 0.68); however, negative predictive value remained consistent (0.88).</p><p><strong>Conclusion: </strong>Deep learning algorithm demonstrated competent performance in predicting LVSD in patients with AF and RVR. In outpatient setting, use of artificial intelligence-based algorithm may facilitate prediction of LVSD and earlier choice of drug, enabling better symptom control in AF patients with RVR.</p>","PeriodicalId":72965,"journal":{"name":"European heart journal. Digital health","volume":"5 6","pages":"683-691"},"PeriodicalIF":3.9000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11570393/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European heart journal. Digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ehjdh/ztae062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Aims: Although evaluation of left ventricular ejection fraction (LVEF) is crucial for deciding the rate control strategy in patients with atrial fibrillation (AF), real-time assessment of LVEF is limited in outpatient settings. We aimed to investigate the performance of artificial intelligence-based algorithms in predicting LV systolic dysfunction (LVSD) in patients with AF and rapid ventricular response (RVR).
Methods and results: This study is an external validation of a pre-existing deep learning algorithm based on residual neural network architecture. Data were obtained from a prospective cohort of AF with RVR at a single centre between 2018 and 2023. Primary outcome was the detection of LVSD, defined as a LVEF ≤ 40%, assessed using 12-lead electrocardiography (ECG). Secondary outcome involved predicting LVSD using 1-lead ECG (Lead I). Among 423 patients, 241 with available echocardiography data within 2 months were evaluated, of whom 54 (22.4%) were confirmed to have LVSD. Deep learning algorithm demonstrated fair performance in predicting LVSD [area under the curve (AUC) 0.78]. Negative predictive value for excluding LVSD was 0.88. Deep learning algorithm resulted competent performance in predicting LVSD compared with N-terminal prohormone of brain natriuretic peptide (AUC 0.78 vs. 0.70, P = 0.12). Predictive performance of the deep learning algorithm was lower in Lead I (AUC 0.68); however, negative predictive value remained consistent (0.88).
Conclusion: Deep learning algorithm demonstrated competent performance in predicting LVSD in patients with AF and RVR. In outpatient setting, use of artificial intelligence-based algorithm may facilitate prediction of LVSD and earlier choice of drug, enabling better symptom control in AF patients with RVR.