Prediction of cardiovascular markers and diseases using retinal fundus images and deep learning: a systematic scoping review.

IF 3.9 Q1 CARDIAC & CARDIOVASCULAR SYSTEMS European heart journal. Digital health Pub Date : 2024-09-10 eCollection Date: 2024-11-01 DOI:10.1093/ehjdh/ztae068
Livie Yumeng Li, Anders Aasted Isaksen, Benjamin Lebiecka-Johansen, Kristian Funck, Vajira Thambawita, Stine Byberg, Tue Helms Andersen, Ole Norgaard, Adam Hulman
{"title":"Prediction of cardiovascular markers and diseases using retinal fundus images and deep learning: a systematic scoping review.","authors":"Livie Yumeng Li, Anders Aasted Isaksen, Benjamin Lebiecka-Johansen, Kristian Funck, Vajira Thambawita, Stine Byberg, Tue Helms Andersen, Ole Norgaard, Adam Hulman","doi":"10.1093/ehjdh/ztae068","DOIUrl":null,"url":null,"abstract":"<p><p>Rapid development in deep learning for image analysis inspired studies to focus on predicting cardiovascular risk using retinal fundus images. This scoping review aimed to identify and describe studies using retinal fundus images and deep learning to predict cardiovascular risk markers and diseases. We searched MEDLINE and Embase on 17 November 2023. Abstracts and relevant full-text articles were independently screened by two reviewers. We included studies that used deep learning for the analysis of retinal fundus images to predict cardiovascular risk markers or cardiovascular diseases (CVDs) and excluded studies only using predefined characteristics of retinal fundus images. Study characteristics were presented using descriptive statistics. We included 24 articles published between 2018 and 2023. Among these, 23 (96%) were cross-sectional studies and eight (33%) were follow-up studies with clinical CVD outcomes. Seven studies included a combination of both designs. Most studies (96%) used convolutional neural networks to process images. We found nine (38%) studies that incorporated clinical risk factors in the prediction and four (17%) that compared the results to commonly used clinical risk scores in a prospective setting. Three of these reported improved discriminative performance. External validation of models was rare (21%). There is increasing interest in using retinal fundus images in cardiovascular risk assessment with some studies demonstrating some improvements in prediction. However, more prospective studies, comparisons of results to clinical risk scores, and models augmented with traditional risk factors can strengthen further research in the field.</p>","PeriodicalId":72965,"journal":{"name":"European heart journal. Digital health","volume":"5 6","pages":"660-669"},"PeriodicalIF":3.9000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11570365/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European heart journal. Digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ehjdh/ztae068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Rapid development in deep learning for image analysis inspired studies to focus on predicting cardiovascular risk using retinal fundus images. This scoping review aimed to identify and describe studies using retinal fundus images and deep learning to predict cardiovascular risk markers and diseases. We searched MEDLINE and Embase on 17 November 2023. Abstracts and relevant full-text articles were independently screened by two reviewers. We included studies that used deep learning for the analysis of retinal fundus images to predict cardiovascular risk markers or cardiovascular diseases (CVDs) and excluded studies only using predefined characteristics of retinal fundus images. Study characteristics were presented using descriptive statistics. We included 24 articles published between 2018 and 2023. Among these, 23 (96%) were cross-sectional studies and eight (33%) were follow-up studies with clinical CVD outcomes. Seven studies included a combination of both designs. Most studies (96%) used convolutional neural networks to process images. We found nine (38%) studies that incorporated clinical risk factors in the prediction and four (17%) that compared the results to commonly used clinical risk scores in a prospective setting. Three of these reported improved discriminative performance. External validation of models was rare (21%). There is increasing interest in using retinal fundus images in cardiovascular risk assessment with some studies demonstrating some improvements in prediction. However, more prospective studies, comparisons of results to clinical risk scores, and models augmented with traditional risk factors can strengthen further research in the field.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用视网膜眼底图像和深度学习预测心血管标志物和疾病:系统性范围综述。
用于图像分析的深度学习技术发展迅速,激发了人们将研究重点放在利用视网膜眼底图像预测心血管风险上。本范围界定综述旨在识别和描述利用视网膜眼底图像和深度学习预测心血管风险标志物和疾病的研究。我们于 2023 年 11 月 17 日检索了 MEDLINE 和 Embase。摘要和相关全文由两名审稿人独立筛选。我们纳入了使用深度学习分析视网膜眼底图像来预测心血管风险标志物或心血管疾病(CVDs)的研究,并排除了仅使用视网膜眼底图像预定义特征的研究。研究特征采用描述性统计。我们纳入了 2018 年至 2023 年间发表的 24 篇文章。其中,23篇(96%)为横断面研究,8篇(33%)为具有临床心血管疾病结果的随访研究。有 7 项研究结合了这两种设计。大多数研究(96%)使用卷积神经网络处理图像。我们发现有九项研究(38%)在预测中纳入了临床风险因素,有四项研究(17%)将预测结果与前瞻性环境中常用的临床风险评分进行了比较。其中有三项研究报告称判别性能有所提高。模型的外部验证很少见(21%)。人们对使用视网膜眼底图像进行心血管风险评估的兴趣与日俱增,一些研究显示预测效果有所改善。然而,更多的前瞻性研究、将结果与临床风险评分进行比较,以及使用传统风险因素增强模型,可以加强该领域的进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.00
自引率
0.00%
发文量
0
期刊最新文献
Introducing online multi-language video animations to support patients' understanding of cardiac procedures in a high-volume tertiary centre. Deep-learning-driven optical coherence tomography analysis for cardiovascular outcome prediction in patients with acute coronary syndrome. Validation of machine learning-based risk stratification scores for patients with acute coronary syndrome treated with percutaneous coronary intervention. On the detection of acute coronary occlusion with the miniECG. Cardiac anatomic digital twins: findings from a single national centre.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1