Room Temperature Pulsed Laser Deposition of Aluminum Zinc Oxide (AZO): Enabling Scalable Indium-Free Transparent Conductive Oxides

IF 18.5 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Advanced Functional Materials Pub Date : 2024-11-20 DOI:10.1002/adfm.202418069
Joost W. C. Reinders, Jons Bolding, Cristina Roldán-Carmona, Federico Ventosinos, Abhyuday Paliwal, Lidón Gil-Escrig, Francisco Palazon, Michele Sessolo, Kassio P. S. Zanoni, Henk J. Bolink
{"title":"Room Temperature Pulsed Laser Deposition of Aluminum Zinc Oxide (AZO): Enabling Scalable Indium-Free Transparent Conductive Oxides","authors":"Joost W. C. Reinders, Jons Bolding, Cristina Roldán-Carmona, Federico Ventosinos, Abhyuday Paliwal, Lidón Gil-Escrig, Francisco Palazon, Michele Sessolo, Kassio P. S. Zanoni, Henk J. Bolink","doi":"10.1002/adfm.202418069","DOIUrl":null,"url":null,"abstract":"Indium tin oxide (ITO) is the leading transparent electrode material in displays and in photovoltaics. As both these markets are vast and rapidly expanding, the demand for alternative transparent conductive oxides (TCOs) is becoming increasingly urgent due to the limited availability of indium. Herein, aluminum-doped zinc oxide (AZO) is revisited as a promising indium-free TCO candidate. An industrial-scale pulsed laser deposition (PLD) process is developed that produces highly conductive and transparent AZO films at room temperature, without the need for post-deposition annealing. This PLD-AZO films have excellent morphological, electrical, and optical properties, with sheet resistances of ≈ 55–25 Ω ϒ<sup>−1</sup> for thin TCO thicknesses (around 100 to 200 nm, respectively), and absorptance from 400 to 1000 nm below 10%. We demonstrate the application of this highly conductive PLD-AZO not only as a bottom contact but also as an effective top contact in perovskite solar cells, highlighting its versatility. The AZO-based devices achieve performance and stabilities equivalent to that of ITO-based. This findings demonstrate the robustness and potential of PLD-deposited AZO layers in enhancing displays and PV production and facilitating the wider adoption of renewable and sustainable TCO alternatives in the expanding photovoltaics and displays markets.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"39 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202418069","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Indium tin oxide (ITO) is the leading transparent electrode material in displays and in photovoltaics. As both these markets are vast and rapidly expanding, the demand for alternative transparent conductive oxides (TCOs) is becoming increasingly urgent due to the limited availability of indium. Herein, aluminum-doped zinc oxide (AZO) is revisited as a promising indium-free TCO candidate. An industrial-scale pulsed laser deposition (PLD) process is developed that produces highly conductive and transparent AZO films at room temperature, without the need for post-deposition annealing. This PLD-AZO films have excellent morphological, electrical, and optical properties, with sheet resistances of ≈ 55–25 Ω ϒ−1 for thin TCO thicknesses (around 100 to 200 nm, respectively), and absorptance from 400 to 1000 nm below 10%. We demonstrate the application of this highly conductive PLD-AZO not only as a bottom contact but also as an effective top contact in perovskite solar cells, highlighting its versatility. The AZO-based devices achieve performance and stabilities equivalent to that of ITO-based. This findings demonstrate the robustness and potential of PLD-deposited AZO layers in enhancing displays and PV production and facilitating the wider adoption of renewable and sustainable TCO alternatives in the expanding photovoltaics and displays markets.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
氧化铝锌(AZO)的室温脉冲激光沉积:实现可扩展的无铟透明导电氧化物
铟锡氧化物(ITO)是显示器和光伏领域的主要透明电极材料。由于这两个市场都很广阔且在迅速扩大,铟的供应有限,因此对替代透明导电氧化物(TCO)的需求日益迫切。在此,掺铝氧化锌(AZO)作为一种有前途的无铟透明导电氧化物候选材料被重新审视。我们开发了一种工业规模的脉冲激光沉积(PLD)工艺,可在室温下生产高导电性和透明的 AZO 薄膜,无需沉积后退火。这种 PLD-AZO 薄膜具有出色的形态、电学和光学特性,薄 TCO 厚度(分别约为 100 至 200 纳米)的片状电阻≈ 55-25 Ω ϒ-1,400 至 1000 纳米的吸收率低于 10%。我们展示了这种高导电性 PLD-AZO 的应用,它不仅可用作过氧化物太阳能电池的底部触点,还可用作有效的顶部触点,突出了它的多功能性。基于 AZO 的器件的性能和稳定性与基于 ITO 的器件相当。这一发现证明了 PLD 沉积 AZO 层在提高显示器和光伏生产方面的稳健性和潜力,并有助于在不断扩大的光伏和显示器市场中更广泛地采用可再生和可持续的 TCO 替代品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
期刊最新文献
Enhanced Mechanical-Magnetic Coupling and Bioinspired Structural Design of Magnetorheological Elastomers Band Structure and Spin-State-Induced Electronic Configuration Regulation for Efficient Sulfur Redox Reaction The Out-of-Plane C─S Bonds Boosting Reversible Redox in Copper Sulfide Cathodes for Ultradurable Magnesium Battery 12.86% Efficient Cu2ZnSn(S,Se)4 Thin Film Solar Cells via Inkjet Printing with 2-Methoxyethanol-Based Air-Stable Precursor Ink Atomically Dispersed Scandium in Cuprous Oxide Weakens *CO Adsorption to Boost Carbon Dioxide Electroreduction Toward C2 Products
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1