Anode Interphase Design for Fast-Charging Lithium-Based Rechargeable Batteries

IF 32.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Energy & Environmental Science Pub Date : 2025-02-17 DOI:10.1039/d4ee06107a
Xiancheng Wang, Zihe Chen, Shiyu Liu, Shuibin Tu, Renming Zhan, Li Wang, Yongming Sun
{"title":"Anode Interphase Design for Fast-Charging Lithium-Based Rechargeable Batteries","authors":"Xiancheng Wang, Zihe Chen, Shiyu Liu, Shuibin Tu, Renming Zhan, Li Wang, Yongming Sun","doi":"10.1039/d4ee06107a","DOIUrl":null,"url":null,"abstract":"High energy density and exceptional fast-charging capability are emerging as critical technical parameters for lithium (Li)-based rechargeable batteries, aimed at meeting the increasing demands of advanced portable electronics, electric vehicles, and grid energy storage systems. However, the sluggish charge transfer kinetics associated with contemporary graphite anodes significantly hinder both the fast-charging performance and overall energy characteristics of existing Li-based rechargeable batteries. As we transition to high-capacity anodes (such as alloying-type and Li metal anodes) for next-generation high-energy-density batteries, their inherent slow electrochemical Li+/e− combination rate presents new challenges for fast charging. Furthermore, the significant volume changes that occur during charge and discharge processes contribute to the structural instability of these high-capacity materials and electrodes. This phenomenon also leads to severe side reactions between the active material and the electrolyte, ultimately compromising the electrochemical cycling lifespan. The empirical evidence suggests that the strategic design of the interphase significantly augments the electrochemical reaction kinetics of battery anode materials, concurrently enhancing their structural stability. Nevertheless, a profound understanding of the intricate mechanisms is still lacking, making the establishment of a universal design rule for various anode materials a challenging task. In this review, we categorize the interphases of anode materials into outer and inner interphases based on their physical/chemical environments in batteries. After a comprehensive discussion on the roles and mechanisms of advanced interphases across a range of anode materials, including graphite, alloying-type, and Li metal foil anode materials, we elucidate the principles of outer and inner interphase design, with an emphasis on enhancing their electrochemical reaction kinetics. Several advanced strategies for the design of electrode structures are also proposed to synergistically enhance the Li+ transport processes. Subsequently, we provide typical examples of advanced interphase design, based on the understanding of the proposed interphase design principles for various anodes. Additionally, we offer a review on the future direction of anode interphase design, aiming at the development of high energy density Li-based rechargeable batteries with superior fast-charging capability and long lifespan.","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":"2 1","pages":""},"PeriodicalIF":32.4000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4ee06107a","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

High energy density and exceptional fast-charging capability are emerging as critical technical parameters for lithium (Li)-based rechargeable batteries, aimed at meeting the increasing demands of advanced portable electronics, electric vehicles, and grid energy storage systems. However, the sluggish charge transfer kinetics associated with contemporary graphite anodes significantly hinder both the fast-charging performance and overall energy characteristics of existing Li-based rechargeable batteries. As we transition to high-capacity anodes (such as alloying-type and Li metal anodes) for next-generation high-energy-density batteries, their inherent slow electrochemical Li+/e− combination rate presents new challenges for fast charging. Furthermore, the significant volume changes that occur during charge and discharge processes contribute to the structural instability of these high-capacity materials and electrodes. This phenomenon also leads to severe side reactions between the active material and the electrolyte, ultimately compromising the electrochemical cycling lifespan. The empirical evidence suggests that the strategic design of the interphase significantly augments the electrochemical reaction kinetics of battery anode materials, concurrently enhancing their structural stability. Nevertheless, a profound understanding of the intricate mechanisms is still lacking, making the establishment of a universal design rule for various anode materials a challenging task. In this review, we categorize the interphases of anode materials into outer and inner interphases based on their physical/chemical environments in batteries. After a comprehensive discussion on the roles and mechanisms of advanced interphases across a range of anode materials, including graphite, alloying-type, and Li metal foil anode materials, we elucidate the principles of outer and inner interphase design, with an emphasis on enhancing their electrochemical reaction kinetics. Several advanced strategies for the design of electrode structures are also proposed to synergistically enhance the Li+ transport processes. Subsequently, we provide typical examples of advanced interphase design, based on the understanding of the proposed interphase design principles for various anodes. Additionally, we offer a review on the future direction of anode interphase design, aiming at the development of high energy density Li-based rechargeable batteries with superior fast-charging capability and long lifespan.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Energy & Environmental Science
Energy & Environmental Science 化学-工程:化工
CiteScore
50.50
自引率
2.20%
发文量
349
审稿时长
2.2 months
期刊介绍: Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences." Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).
期刊最新文献
Ultra-uniform interfacial matrix via high-temperature thermal shock for long-cycle stability cathodes of sodium-ion batteries Self-thermoregulating current collectors: built-in thermal protection for safe lithium-ion batteries Anode Interphase Design for Fast-Charging Lithium-Based Rechargeable Batteries Damp-heat stable and efficient perovskite solar cells and mini-modules with tBP-free hole-transporting layer Methane Pyrolysis for Hydrogen Production: Navigating the Path to a Net Zero Future
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1