Mechanistic insights into the electrochemical oxidation of acetate at noble metals

IF 11.5 Q1 CHEMISTRY, PHYSICAL Chem Catalysis Pub Date : 2024-11-21 DOI:10.1016/j.checat.2024.101190
Venkata Sai Sriram Mosali, Hanna Soucie, Xiong Peng, Ehsan Faegh, Matthew Elam, Ian Street, William E. Mustain
{"title":"Mechanistic insights into the electrochemical oxidation of acetate at noble metals","authors":"Venkata Sai Sriram Mosali, Hanna Soucie, Xiong Peng, Ehsan Faegh, Matthew Elam, Ian Street, William E. Mustain","doi":"10.1016/j.checat.2024.101190","DOIUrl":null,"url":null,"abstract":"Electrochemical acetate oxidation (AcOR) offers a sustainable approach to produce renewable biofuels. While CO₂ formation is thermodynamically favored, acetate oxidation can also yield various products through the Kolbe and Hofer-Moest mechanisms, enabling a modulation of the products formed via partial oxidation. Given the complexity of the reaction, it is crucial to understand how different reaction conditions influence the product profile. Furthermore, this process generates methyl radicals, providing insights into methane partial oxidation. The current study explores AcOR on noble metal electrodes (Pt, Pd, Au) in a 0.5 M CH<sub>3</sub>COOK aqueous electrolyte, revealing the mechanism of product formation using potential- and time-dependent electrolysis and isotope-labeling experiments. The effect of surface chemistry, ion transport, electrolyte concentration, and electrolysis techniques on product selectivity is analyzed. Additionally, the study compares product profiles from an electrolyzer cell to those obtained from model electrodes in batch-cell setup.","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":"57 1","pages":""},"PeriodicalIF":11.5000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.checat.2024.101190","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Electrochemical acetate oxidation (AcOR) offers a sustainable approach to produce renewable biofuels. While CO₂ formation is thermodynamically favored, acetate oxidation can also yield various products through the Kolbe and Hofer-Moest mechanisms, enabling a modulation of the products formed via partial oxidation. Given the complexity of the reaction, it is crucial to understand how different reaction conditions influence the product profile. Furthermore, this process generates methyl radicals, providing insights into methane partial oxidation. The current study explores AcOR on noble metal electrodes (Pt, Pd, Au) in a 0.5 M CH3COOK aqueous electrolyte, revealing the mechanism of product formation using potential- and time-dependent electrolysis and isotope-labeling experiments. The effect of surface chemistry, ion transport, electrolyte concentration, and electrolysis techniques on product selectivity is analyzed. Additionally, the study compares product profiles from an electrolyzer cell to those obtained from model electrodes in batch-cell setup.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
贵金属醋酸盐电化学氧化的机理研究
电化学醋酸盐氧化(AcOR)为生产可再生生物燃料提供了一种可持续的方法。从热力学角度来看,CO₂ 的形成是有利的,但醋酸氧化也可通过 Kolbe 和 Hofer-Moest 机制产生各种产物,从而调节通过部分氧化形成的产物。鉴于反应的复杂性,了解不同的反应条件如何影响产物概况至关重要。此外,这一过程还会产生甲基自由基,为甲烷的部分氧化提供启示。目前的研究探讨了贵金属电极(铂、钯、金)在 0.5 M CH3COOK 水电解质中的 AcOR,利用电位和时间依赖性电解及同位素标记实验揭示了产物形成的机理。研究分析了表面化学、离子传输、电解质浓度和电解技术对产物选择性的影响。此外,该研究还将电解槽的产物曲线与批次槽设置中从模型电极获得的曲线进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.50
自引率
6.40%
发文量
0
期刊介绍: Chem Catalysis is a monthly journal that publishes innovative research on fundamental and applied catalysis, providing a platform for researchers across chemistry, chemical engineering, and related fields. It serves as a premier resource for scientists and engineers in academia and industry, covering heterogeneous, homogeneous, and biocatalysis. Emphasizing transformative methods and technologies, the journal aims to advance understanding, introduce novel catalysts, and connect fundamental insights to real-world applications for societal benefit.
期刊最新文献
Enhanced electrochemical reduction of CO2 to CO by ZnO nanorods enriched with oxygen vacancies Spatial effects define CO2 electrolysis systems Strong activity-based volcano-type relationship for dry reforming of methane through modulating Ni-CeO2 interaction over Ni/CeO2-SiO2 catalysts Cation effects on the alkaline oxygen reduction reaction Mechanistic insights into the electrochemical oxidation of acetate at noble metals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1