A New Method for Reconstruction of Regional Three-Dimensional Electron Density Distributions Using AI-Based Data Assimilation Method and Incoherent Scatter Radar Measurements

IF 4.6 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Geophysical Research Letters Pub Date : 2024-11-20 DOI:10.1029/2024GL112352
Chenghao Li, Hanxian Fang, Xiaoqun Cao, Die Duan, Chao Xiao, Hongtao Huang, Ganming Ren, Yang Lin, Yihui Cai
{"title":"A New Method for Reconstruction of Regional Three-Dimensional Electron Density Distributions Using AI-Based Data Assimilation Method and Incoherent Scatter Radar Measurements","authors":"Chenghao Li,&nbsp;Hanxian Fang,&nbsp;Xiaoqun Cao,&nbsp;Die Duan,&nbsp;Chao Xiao,&nbsp;Hongtao Huang,&nbsp;Ganming Ren,&nbsp;Yang Lin,&nbsp;Yihui Cai","doi":"10.1029/2024GL112352","DOIUrl":null,"url":null,"abstract":"<p>The ionosphere's dynamic structure affects electromagnetic radiation by altering radio wave propagation, impacting daily communications. The characteristics of the ionosphere are primarily characterized by electron density parameters. This paper proposes a method to construct Three-Dimensional (3-D) electron density distributions with arbitrary spatiotemporal resolution in ISR observational regions. The method, termed Artificial Intelligence-based data assimilation (AI-Assim), integrates data assimilation directly into a neural network. It assimilates electron density from the IRI-2020 model to fill ISR observation gaps. Experiments conducted using the Sanya Incoherent Scatter Radar (SYISR) in Hainan, China, successfully constructed a 3-D electron density structure over the region, with a 0.2° latitude/longitude resolution and 1 km height resolution. The method's effectiveness was validated by calculating the mean square error and comparing the results with digisonde measurements.</p>","PeriodicalId":12523,"journal":{"name":"Geophysical Research Letters","volume":"51 22","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GL112352","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Research Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GL112352","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The ionosphere's dynamic structure affects electromagnetic radiation by altering radio wave propagation, impacting daily communications. The characteristics of the ionosphere are primarily characterized by electron density parameters. This paper proposes a method to construct Three-Dimensional (3-D) electron density distributions with arbitrary spatiotemporal resolution in ISR observational regions. The method, termed Artificial Intelligence-based data assimilation (AI-Assim), integrates data assimilation directly into a neural network. It assimilates electron density from the IRI-2020 model to fill ISR observation gaps. Experiments conducted using the Sanya Incoherent Scatter Radar (SYISR) in Hainan, China, successfully constructed a 3-D electron density structure over the region, with a 0.2° latitude/longitude resolution and 1 km height resolution. The method's effectiveness was validated by calculating the mean square error and comparing the results with digisonde measurements.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用基于人工智能的数据同化方法和非相干散射雷达测量重建区域三维电子密度分布的新方法
电离层的动态结构通过改变无线电波的传播来影响电磁辐射,从而影响日常通信。电离层的特征主要由电子密度参数表征。本文提出了一种在 ISR 观测区域构建具有任意时空分辨率的三维(3-D)电子密度分布的方法。该方法被称为基于人工智能的数据同化(AI-Assim),将数据同化直接集成到神经网络中。它从 IRI-2020 模型中同化电子密度,以填补 ISR 观测空白。利用中国海南三亚非相干散射雷达(SYISR)进行的实验成功构建了该地区的三维电子密度结构,经纬度分辨率为0.2°,高度分辨率为1千米。通过计算均方误差并将结果与数字探空仪的测量结果进行比较,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Geophysical Research Letters
Geophysical Research Letters 地学-地球科学综合
CiteScore
9.00
自引率
9.60%
发文量
1588
审稿时长
2.2 months
期刊介绍: Geophysical Research Letters (GRL) publishes high-impact, innovative, and timely research on major scientific advances in all the major geoscience disciplines. Papers are communications-length articles and should have broad and immediate implications in their discipline or across the geosciences. GRLmaintains the fastest turn-around of all high-impact publications in the geosciences and works closely with authors to ensure broad visibility of top papers.
期刊最新文献
Attribution of the Record-Breaking Extreme Cold Event Over Northern East Asia in December 2023 Weakened and Lowered Sensitivity of Extreme Precipitation Over the Global Land Monsoon Regions During the Last Glacial Maximum Variability in River Width Reveals Climatic Influence on Channel Geometry On the Temporal Variability of High-Altitude Reflection Potential Structures (HARPS) Contrasting the Evolution of the Tropical Pacific SST Responses to Time-Invariant Extratropical Forcings in the Two Hemispheres
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1