{"title":"Scalable High-Throughput and Low-Latency DVB-S2(x) LDPC Decoders on SIMD Devices","authors":"Bertrand Le Gal","doi":"10.1109/OJCOMS.2024.3494059","DOIUrl":null,"url":null,"abstract":"Low-density parity-check (LDPC) codes are error correction codes (ECC) with near Shannon correction performances limit boosting the reliability of digital communication systems using them. Their efficiency goes hand in hand with their high computational complexity resulting in a computational bottleneck in physical layer processing. Solutions based on multicore and many-core architectures have been proposed to support the development of software-defined radio and virtualized radio access networks (vRANs). Many studies focused on the efficient parallelization of LDPC decoding algorithms. In this study, we propose an efficient SIMD parallelization strategy for DVB-S2(x) LDPC codes. It achieves throughputs from 7 Gbps to 12 Gbps on an INTEL Xeon Gold target when 10 layered decoding iterations are executed. Simultaneously, the latencies are lower than \n<inline-formula> <tex-math>$400~\\mu $ </tex-math></inline-formula>\ns. These performances are equivalent to FPGA-based solutions and overclass CPU and GPU related works by factors up to \n<inline-formula> <tex-math>$5\\times $ </tex-math></inline-formula>\n.","PeriodicalId":33803,"journal":{"name":"IEEE Open Journal of the Communications Society","volume":"5 ","pages":"7216-7227"},"PeriodicalIF":6.3000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10747211","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Journal of the Communications Society","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10747211/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Low-density parity-check (LDPC) codes are error correction codes (ECC) with near Shannon correction performances limit boosting the reliability of digital communication systems using them. Their efficiency goes hand in hand with their high computational complexity resulting in a computational bottleneck in physical layer processing. Solutions based on multicore and many-core architectures have been proposed to support the development of software-defined radio and virtualized radio access networks (vRANs). Many studies focused on the efficient parallelization of LDPC decoding algorithms. In this study, we propose an efficient SIMD parallelization strategy for DVB-S2(x) LDPC codes. It achieves throughputs from 7 Gbps to 12 Gbps on an INTEL Xeon Gold target when 10 layered decoding iterations are executed. Simultaneously, the latencies are lower than
$400~\mu $
s. These performances are equivalent to FPGA-based solutions and overclass CPU and GPU related works by factors up to
$5\times $
.
期刊介绍:
The IEEE Open Journal of the Communications Society (OJ-COMS) is an open access, all-electronic journal that publishes original high-quality manuscripts on advances in the state of the art of telecommunications systems and networks. The papers in IEEE OJ-COMS are included in Scopus. Submissions reporting new theoretical findings (including novel methods, concepts, and studies) and practical contributions (including experiments and development of prototypes) are welcome. Additionally, survey and tutorial articles are considered. The IEEE OJCOMS received its debut impact factor of 7.9 according to the Journal Citation Reports (JCR) 2023.
The IEEE Open Journal of the Communications Society covers science, technology, applications and standards for information organization, collection and transfer using electronic, optical and wireless channels and networks. Some specific areas covered include:
Systems and network architecture, control and management
Protocols, software, and middleware
Quality of service, reliability, and security
Modulation, detection, coding, and signaling
Switching and routing
Mobile and portable communications
Terminals and other end-user devices
Networks for content distribution and distributed computing
Communications-based distributed resources control.