Cellulose regenerated films obtained from the dissolution of cotton waste in ionic liquid

IF 2.2 4区 化学 Q3 CHEMISTRY, PHYSICAL Colloid and Polymer Science Pub Date : 2024-10-01 DOI:10.1007/s00396-024-05324-0
Aline Ferreira Knihs, Beatriz Barbosa de Brito, Miguel Angelo Granato, Bruna Porto, Rita de Cassia Siqueira Curto Valle , Andrea Cristiane Krause Bierhalz
{"title":"Cellulose regenerated films obtained from the dissolution of cotton waste in ionic liquid","authors":"Aline Ferreira Knihs,&nbsp;Beatriz Barbosa de Brito,&nbsp;Miguel Angelo Granato,&nbsp;Bruna Porto,&nbsp;Rita de Cassia Siqueira Curto Valle\n,&nbsp;Andrea Cristiane Krause Bierhalz","doi":"10.1007/s00396-024-05324-0","DOIUrl":null,"url":null,"abstract":"<div><p>In this study, cotton waste (white and green) from the textile brushing process and cotton wool were used as raw materials to obtain regenerated cellulose films. Cellulose was dissolved with the ionic liquid 1-ethyl-3-methylimidazolium chloride [EMIM]Cl at temperatures of 110, 120, and 130 °C. The dissolution process was evaluated by polarized light microscopy which demonstrated that at lower temperatures (110 °C and 120 °C), the dissolution is preceded by swelling, whereas at 130 °C, rapid fragmentation of the fibers occurs. The presence of dye in cotton fiber extended the dissolution time. After dissolution at 110 °C and regeneration in a water bath, the films obtained were smooth and homogeneous and preserved the color of the residue. Characterization by X-ray diffraction (XRD) and Fourier transform-infrared spectroscopy (FTIR) indicated a transition from crystalline type I cellulose in the cotton samples to an amorphous structure in the regenerated films. The thermogravimetric analysis (TGA) revealed that films showed lower thermal stability than cotton fibers, attributed to cellulose depolymerization. The cotton source did not significantly affect the mechanical properties of the films, which had tensile strength ranging from 25.8 to 33.4 MPa and elongation at break between 14.7 and 19.7%. Overall, textile residues can be used without prior treatment to produce either transparent or intrinsically colored films with potential for application in various fields.</p><h3>Graphical abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":520,"journal":{"name":"Colloid and Polymer Science","volume":"302 12","pages":"2015 - 2026"},"PeriodicalIF":2.2000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Colloid and Polymer Science","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s00396-024-05324-0","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, cotton waste (white and green) from the textile brushing process and cotton wool were used as raw materials to obtain regenerated cellulose films. Cellulose was dissolved with the ionic liquid 1-ethyl-3-methylimidazolium chloride [EMIM]Cl at temperatures of 110, 120, and 130 °C. The dissolution process was evaluated by polarized light microscopy which demonstrated that at lower temperatures (110 °C and 120 °C), the dissolution is preceded by swelling, whereas at 130 °C, rapid fragmentation of the fibers occurs. The presence of dye in cotton fiber extended the dissolution time. After dissolution at 110 °C and regeneration in a water bath, the films obtained were smooth and homogeneous and preserved the color of the residue. Characterization by X-ray diffraction (XRD) and Fourier transform-infrared spectroscopy (FTIR) indicated a transition from crystalline type I cellulose in the cotton samples to an amorphous structure in the regenerated films. The thermogravimetric analysis (TGA) revealed that films showed lower thermal stability than cotton fibers, attributed to cellulose depolymerization. The cotton source did not significantly affect the mechanical properties of the films, which had tensile strength ranging from 25.8 to 33.4 MPa and elongation at break between 14.7 and 19.7%. Overall, textile residues can be used without prior treatment to produce either transparent or intrinsically colored films with potential for application in various fields.

Graphical abstract

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用离子液体溶解棉花废料获得的纤维素再生薄膜
本研究以纺织刷毛过程中产生的棉花废料(白色和绿色)和棉絮为原料,制备再生纤维素薄膜。在 110、120 和 130 °C 的温度下,用离子液体 1-乙基-3-甲基氯化咪唑[EMIM]Cl 溶解纤维素。偏振光显微镜对溶解过程进行了评估,结果表明,在较低温度下(110 ℃ 和 120 ℃),溶解之前会发生膨胀,而在 130 ℃ 时,纤维会迅速碎裂。棉纤维中染料的存在延长了溶解时间。在 110 °C 下溶解并在水浴中再生后,得到的薄膜光滑、均匀,并保持了残留物的颜色。X 射线衍射(XRD)和傅立叶变换红外光谱(FTIR)的表征表明,棉花样品中的 I 型纤维素已从结晶型转变为再生薄膜中的无定形结构。热重分析(TGA)显示,薄膜的热稳定性低于棉纤维,原因是纤维素发生了解聚。棉源对薄膜的机械性能没有明显影响,薄膜的拉伸强度在 25.8 到 33.4 兆帕之间,断裂伸长率在 14.7 到 19.7% 之间。总之,纺织品残留物无需事先处理即可用于生产透明或本色薄膜,有望应用于各个领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Colloid and Polymer Science
Colloid and Polymer Science 化学-高分子科学
CiteScore
4.60
自引率
4.20%
发文量
111
审稿时长
2.2 months
期刊介绍: Colloid and Polymer Science - a leading international journal of longstanding tradition - is devoted to colloid and polymer science and its interdisciplinary interactions. As such, it responds to a demand which has lost none of its actuality as revealed in the trends of contemporary materials science.
期刊最新文献
Cellulose regenerated films obtained from the dissolution of cotton waste in ionic liquid Study on the efficient precipitation of germanium by Fe(OH)3 colloid generated by neutralization precipitation method Study on oil-in-water emulsions stabilized by SiO2 nanoparticles for enhancing oil recovery in harsh reservoirs A comparative experimental work on the drop-weight impact responses of thermoplastic polymers produced by additive manufacturing: combined influence of infill rate, test temperature, and filament material Multicompartment microparticles of SBM triblock terpolymers: Morphological transitions through homopolymer blending
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1