{"title":"Dynamical Transition of Quantum Scrambling in a Non-Hermitian Floquet Synthetic System","authors":"Liang Huo, Han Ke, Wen-Lei Zhao","doi":"10.1007/s10955-024-03368-8","DOIUrl":null,"url":null,"abstract":"<div><p>We investigate the dynamics of quantum scrambling, characterized by the out-of-time ordered correlators (OTOCs), in a non-Hermitian quantum kicked rotor subjected to quasi-periodical modulation in kicking potential. Quasi-periodic modulation with incommensurate frequencies creates a high-dimensional synthetic space, where two different phases of quantum scrambling emerge: the freezing phase characterized by the rapid increase of OTOCs towards saturation, and the chaotic scrambling phase featured by the linear growth of OTOCs with time. We find the dynamical transition from the freezing phase to the chaotic scrambling phase, which is assisted by increasing the real part of the kicking potential along with a zero value of its imaginary part. The opposite transition occurs with the increase in the imaginary part of the kicking potential, demonstrating the suppression of quantum scrambling by non-Hermiticity. The underlying mechanism is uncovered by the extension of the Floquet theory. Possible applications in the field of quantum information are discussed.</p></div>","PeriodicalId":667,"journal":{"name":"Journal of Statistical Physics","volume":"191 12","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10955-024-03368-8","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We investigate the dynamics of quantum scrambling, characterized by the out-of-time ordered correlators (OTOCs), in a non-Hermitian quantum kicked rotor subjected to quasi-periodical modulation in kicking potential. Quasi-periodic modulation with incommensurate frequencies creates a high-dimensional synthetic space, where two different phases of quantum scrambling emerge: the freezing phase characterized by the rapid increase of OTOCs towards saturation, and the chaotic scrambling phase featured by the linear growth of OTOCs with time. We find the dynamical transition from the freezing phase to the chaotic scrambling phase, which is assisted by increasing the real part of the kicking potential along with a zero value of its imaginary part. The opposite transition occurs with the increase in the imaginary part of the kicking potential, demonstrating the suppression of quantum scrambling by non-Hermiticity. The underlying mechanism is uncovered by the extension of the Floquet theory. Possible applications in the field of quantum information are discussed.
期刊介绍:
The Journal of Statistical Physics publishes original and invited review papers in all areas of statistical physics as well as in related fields concerned with collective phenomena in physical systems.