Ye Wu, Cheng Hu, Yaxing Li, Yu Wang, Heng Gong, Cheng Zheng, Qing-Quan Kong, Li Yang, Yunbing Wang
{"title":"A Versatile Composite Hydrogel with Spatiotemporal Drug Delivery of Mesoporous ZnO and Recombinant Human Collagen for Diabetic Infected Wound Healing.","authors":"Ye Wu, Cheng Hu, Yaxing Li, Yu Wang, Heng Gong, Cheng Zheng, Qing-Quan Kong, Li Yang, Yunbing Wang","doi":"10.1021/acs.biomac.4c01155","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetic wounds are increasingly common and challenging to treat due to high infection risks in a high-glucose environment. Effective treatment requires wound dressings that combat infections, while promoting angiogenesis and skin regeneration. This study presents a hydrogel-based drug delivery system made from cellulose designed to accelerate diabetic wound healing by eliminating bacterial infections. The hydrogel, formed by linking phenylboronic acid-grafted oxidized methylcellulose (POMC) with poly(vinyl alcohol) (PVA), exhibits self-healing and injectable properties. It is further enhanced by adding type I recombinant human collagen (rhCOL1) to stimulate cell growth and angiogenesis and mesoporous zinc oxide (mZnO) for antibacterial and anti-inflammatory effects. Upon application, the hydrogel degrades under pH/ROS stimuli, releasing mZnO and rhCOL1 in a controlled manner that matches the wound healing stages. In vivo tests show that the hydrogel effectively eliminates bacteria, reduces inflammation, and promotes rapid skin regeneration, making it a promising solution for treating diabetic wounds.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.4c01155","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Diabetic wounds are increasingly common and challenging to treat due to high infection risks in a high-glucose environment. Effective treatment requires wound dressings that combat infections, while promoting angiogenesis and skin regeneration. This study presents a hydrogel-based drug delivery system made from cellulose designed to accelerate diabetic wound healing by eliminating bacterial infections. The hydrogel, formed by linking phenylboronic acid-grafted oxidized methylcellulose (POMC) with poly(vinyl alcohol) (PVA), exhibits self-healing and injectable properties. It is further enhanced by adding type I recombinant human collagen (rhCOL1) to stimulate cell growth and angiogenesis and mesoporous zinc oxide (mZnO) for antibacterial and anti-inflammatory effects. Upon application, the hydrogel degrades under pH/ROS stimuli, releasing mZnO and rhCOL1 in a controlled manner that matches the wound healing stages. In vivo tests show that the hydrogel effectively eliminates bacteria, reduces inflammation, and promotes rapid skin regeneration, making it a promising solution for treating diabetic wounds.
期刊介绍:
Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine.
Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.