Mahintaj Dara, Mehdi Dianatpour, Negar Azarpira, Nader Tanideh, Romina Tanideh
{"title":"Integrating CRISPR technology with exosomes: Revolutionizing gene delivery systems.","authors":"Mahintaj Dara, Mehdi Dianatpour, Negar Azarpira, Nader Tanideh, Romina Tanideh","doi":"10.1016/j.bbrc.2024.151002","DOIUrl":null,"url":null,"abstract":"<p><p>CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) serves as an adaptive immune system in bacteria and archaea, offering a defense mechanism against invading genetic elements such as viruses (bacteriophages) and plasmids. Today, CRISPR has evolved into a powerful gene-editing technology that enables highly specific and rapid modifications of DNA within a genome. It has a broad range of applications across various fields, including medicine, agriculture, and fundamental research. One of the significant challenges facing this technology is the efficient transfer of CRISPR constructs into target cells for gene editing. There are several methods to deliver this system into target cells, which can be classified as viral and non-viral methods. Each of these approaches has its own advantages and disadvantages. Recently, the use of extracellular vesicles for delivery has garnered particular attention. Exosomes are nano-sized extracellular vesicles that have emerged as promising carriers for drug delivery due to their unique properties. These naturally occurring vesicles, typically ranging from 30 to 150 nm in diameter, facilitate intercellular communication by transferring bioactive molecules such as proteins, lipids, and nucleic acids between cells. Exosome therapy has surfaced as a promising strategy in regenerative medicine, utilizing small extracellular vesicles to deliver therapeutic molecules to target cells. One of the emerging options for transferring the CRISPR system is exosomes. The integration of these two advanced technologies holds significant potential for developing efficient and targeted gene editing and advancing precision medicine. In contemporary medicine, there is an increasing focus on personalized and targeted treatments that cater to the distinct genetic and molecular profiles of individual patients. The synergy of CRISPR technology and exosome therapy presents a remarkable opportunity to develop highly targeted and effective therapeutic strategies customized to individual patient requirements. This review article examines the potential of incorporating CRISPR technology within exosomes for precision therapeutic applications.</p>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":"740 ","pages":"151002"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical and biophysical research communications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.bbrc.2024.151002","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) serves as an adaptive immune system in bacteria and archaea, offering a defense mechanism against invading genetic elements such as viruses (bacteriophages) and plasmids. Today, CRISPR has evolved into a powerful gene-editing technology that enables highly specific and rapid modifications of DNA within a genome. It has a broad range of applications across various fields, including medicine, agriculture, and fundamental research. One of the significant challenges facing this technology is the efficient transfer of CRISPR constructs into target cells for gene editing. There are several methods to deliver this system into target cells, which can be classified as viral and non-viral methods. Each of these approaches has its own advantages and disadvantages. Recently, the use of extracellular vesicles for delivery has garnered particular attention. Exosomes are nano-sized extracellular vesicles that have emerged as promising carriers for drug delivery due to their unique properties. These naturally occurring vesicles, typically ranging from 30 to 150 nm in diameter, facilitate intercellular communication by transferring bioactive molecules such as proteins, lipids, and nucleic acids between cells. Exosome therapy has surfaced as a promising strategy in regenerative medicine, utilizing small extracellular vesicles to deliver therapeutic molecules to target cells. One of the emerging options for transferring the CRISPR system is exosomes. The integration of these two advanced technologies holds significant potential for developing efficient and targeted gene editing and advancing precision medicine. In contemporary medicine, there is an increasing focus on personalized and targeted treatments that cater to the distinct genetic and molecular profiles of individual patients. The synergy of CRISPR technology and exosome therapy presents a remarkable opportunity to develop highly targeted and effective therapeutic strategies customized to individual patient requirements. This review article examines the potential of incorporating CRISPR technology within exosomes for precision therapeutic applications.
期刊介绍:
Biochemical and Biophysical Research Communications is the premier international journal devoted to the very rapid dissemination of timely and significant experimental results in diverse fields of biological research. The development of the "Breakthroughs and Views" section brings the minireview format to the journal, and issues often contain collections of special interest manuscripts. BBRC is published weekly (52 issues/year).Research Areas now include: Biochemistry; biophysics; cell biology; developmental biology; immunology
; molecular biology; neurobiology; plant biology and proteomics