Yuitsu Otsuka, Moriyuki Kawauchi, Kai Yoshizawa, Saori Endo, Kim Schiphof, Kenya Tsuji, Akira Yoshimi, Chihiro Tanaka, Shigekazu Yano, Vladimir Elisashvili, Takehito Nakazawa, Toshikazu Irie, Yoichi Honda
{"title":"Disruption of the pkac2 gene in Pleurotus ostreatus alters cell wall structures and enables mycelial dispersion in liquid culture.","authors":"Yuitsu Otsuka, Moriyuki Kawauchi, Kai Yoshizawa, Saori Endo, Kim Schiphof, Kenya Tsuji, Akira Yoshimi, Chihiro Tanaka, Shigekazu Yano, Vladimir Elisashvili, Takehito Nakazawa, Toshikazu Irie, Yoichi Honda","doi":"10.1093/femsle/fnae101","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we developed a mycelial dispersion strain by disrupting the pkac2 gene in the white-rot fungus Pleurotus ostreatus. pkac2 is a catalytic subunit gene of protein kinase A, which regulates several transcription factors related to cell wall synthesis. Liquid cultures of the Δpkac2 strains showed very high mycelial dispersibility and were visibly different from the wild-type strain (WT). Although growth on agar medium was slower than that of WT, Δpkac2 strains grew faster in liquid culture and had approximately twice the mycelial dry weight of WT after 5 d of culture. Microscopic observations showed that the cell walls of the Δpkac2 strains were thinner compared to WT. The β-glucan content in the cell walls decreased in the pkac2 disruptants, although the transcription levels of β-glucan synthase genes increased. Furthermore, the Δpkac2 strains showed decreased hydrophobicity and stress tolerance compared to WT. These results indicate that disruption of the pkac2 gene in P. ostreatus alters the structure of the cell wall surface layer, resulting in high-density cultures due to mycelial dispersion.</p>","PeriodicalId":12214,"journal":{"name":"Fems Microbiology Letters","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fems Microbiology Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/femsle/fnae101","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we developed a mycelial dispersion strain by disrupting the pkac2 gene in the white-rot fungus Pleurotus ostreatus. pkac2 is a catalytic subunit gene of protein kinase A, which regulates several transcription factors related to cell wall synthesis. Liquid cultures of the Δpkac2 strains showed very high mycelial dispersibility and were visibly different from the wild-type strain (WT). Although growth on agar medium was slower than that of WT, Δpkac2 strains grew faster in liquid culture and had approximately twice the mycelial dry weight of WT after 5 d of culture. Microscopic observations showed that the cell walls of the Δpkac2 strains were thinner compared to WT. The β-glucan content in the cell walls decreased in the pkac2 disruptants, although the transcription levels of β-glucan synthase genes increased. Furthermore, the Δpkac2 strains showed decreased hydrophobicity and stress tolerance compared to WT. These results indicate that disruption of the pkac2 gene in P. ostreatus alters the structure of the cell wall surface layer, resulting in high-density cultures due to mycelial dispersion.
期刊介绍:
FEMS Microbiology Letters gives priority to concise papers that merit rapid publication by virtue of their originality, general interest and contribution to new developments in microbiology. All aspects of microbiology, including virology, are covered.
2019 Impact Factor: 1.987, Journal Citation Reports (Source Clarivate, 2020)
Ranking: 98/135 (Microbiology)
The journal is divided into eight Sections:
Physiology and Biochemistry (including genetics, molecular biology and ‘omic’ studies)
Food Microbiology (from food production and biotechnology to spoilage and food borne pathogens)
Biotechnology and Synthetic Biology
Pathogens and Pathogenicity (including medical, veterinary, plant and insect pathogens – particularly those relating to food security – with the exception of viruses)
Environmental Microbiology (including ecophysiology, ecogenomics and meta-omic studies)
Virology (viruses infecting any organism, including Bacteria and Archaea)
Taxonomy and Systematics (for publication of novel taxa, taxonomic reclassifications and reviews of a taxonomic nature)
Professional Development (including education, training, CPD, research assessment frameworks, research and publication metrics, best-practice, careers and history of microbiology)
If you are unsure which Section is most appropriate for your manuscript, for example in the case of transdisciplinary studies, we recommend that you contact the Editor-In-Chief by email prior to submission. Our scope includes any type of microorganism - all members of the Bacteria and the Archaea and microbial members of the Eukarya (yeasts, filamentous fungi, microbial algae, protozoa, oomycetes, myxomycetes, etc.) as well as all viruses.