Bidirectional Control of Emotional Behaviors by Excitatory and Inhibitory Neurons in the Orbitofrontal Cortex.

IF 1.8 4区 医学 Q3 MEDICINE, RESEARCH & EXPERIMENTAL Experimental Neurobiology Pub Date : 2024-10-31 DOI:10.5607/en24021
Jihoon Kim, Mijung Choi, Jimin Lee, Inah Park, Kyungjin Kim, Han Kyoung Choe
{"title":"Bidirectional Control of Emotional Behaviors by Excitatory and Inhibitory Neurons in the Orbitofrontal Cortex.","authors":"Jihoon Kim, Mijung Choi, Jimin Lee, Inah Park, Kyungjin Kim, Han Kyoung Choe","doi":"10.5607/en24021","DOIUrl":null,"url":null,"abstract":"<p><p>The orbitofrontal cortex (OFC) plays a crucial role in mood disorders; however, its specific role in the emotional behaviors of mice remains unclear. This study investigates the bidirectional control of emotional behaviors using population calcium dynamics and optogenetic manipulation of OFC neurons. Fiber photometry of OFC neurons revealed that OFC excitatory neurons consistently responded to the onset and offset of aversive conditions, showing decreased activation in response to anxiogenic and stressful stimuli, including tail suspension, restraint stress, and exposure to the center of the open field. The selective activation of excitatory neurons in the OFC reduced the time spent in the center of the open field, whereas optogenetic activation of inhibitory neurons in the OFC induced the opposite behavioral changes. We also provided a brain-wide activation map for OFC excitatory and inhibitory neuron activation. Our findings demonstrate that excitatory and inhibitory neurons in the OFC play opposing roles in the regulation of emotional behaviors. These results provide new insights into the neural mechanisms underlying emotional control and suggest that targeting these specific neuronal populations may offer novel therapeutic strategies for emotional disorders.</p>","PeriodicalId":12263,"journal":{"name":"Experimental Neurobiology","volume":"33 5","pages":"225-237"},"PeriodicalIF":1.8000,"publicationDate":"2024-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11581826/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.5607/en24021","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The orbitofrontal cortex (OFC) plays a crucial role in mood disorders; however, its specific role in the emotional behaviors of mice remains unclear. This study investigates the bidirectional control of emotional behaviors using population calcium dynamics and optogenetic manipulation of OFC neurons. Fiber photometry of OFC neurons revealed that OFC excitatory neurons consistently responded to the onset and offset of aversive conditions, showing decreased activation in response to anxiogenic and stressful stimuli, including tail suspension, restraint stress, and exposure to the center of the open field. The selective activation of excitatory neurons in the OFC reduced the time spent in the center of the open field, whereas optogenetic activation of inhibitory neurons in the OFC induced the opposite behavioral changes. We also provided a brain-wide activation map for OFC excitatory and inhibitory neuron activation. Our findings demonstrate that excitatory and inhibitory neurons in the OFC play opposing roles in the regulation of emotional behaviors. These results provide new insights into the neural mechanisms underlying emotional control and suggest that targeting these specific neuronal populations may offer novel therapeutic strategies for emotional disorders.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
轨道额叶皮层的兴奋和抑制神经元对情绪行为的双向控制
眶额皮层(OFC)在情绪障碍中起着至关重要的作用;然而,它在小鼠情绪行为中的具体作用仍不清楚。本研究利用群体钙动力学和光遗传学操纵 OFC 神经元,研究了情绪行为的双向控制。OFC神经元的纤维光度测量显示,OFC兴奋性神经元始终对厌恶条件的开始和抵消做出反应,在对焦虑性和应激性刺激(包括尾巴悬吊、束缚应激和暴露于开阔地中心)做出反应时显示出激活减少。选择性激活OFC中的兴奋性神经元会减少在开放场中心花费的时间,而光遗传激活OFC中的抑制性神经元则会诱发相反的行为变化。我们还提供了一个全脑激活图谱,用于显示OFC兴奋性和抑制性神经元的激活情况。我们的研究结果表明,OFC中的兴奋性神经元和抑制性神经元在情绪行为的调节中扮演着相反的角色。这些结果为了解情绪控制的神经机制提供了新的视角,并表明针对这些特定的神经元群可能为情绪障碍提供新的治疗策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Experimental Neurobiology
Experimental Neurobiology Neuroscience-Cellular and Molecular Neuroscience
CiteScore
4.30
自引率
4.20%
发文量
29
期刊介绍: Experimental Neurobiology is an international forum for interdisciplinary investigations of the nervous system. The journal aims to publish papers that present novel observations in all fields of neuroscience, encompassing cellular & molecular neuroscience, development/differentiation/plasticity, neurobiology of disease, systems/cognitive/behavioral neuroscience, drug development & industrial application, brain-machine interface, methodologies/tools, and clinical neuroscience. It should be of interest to a broad scientific audience working on the biochemical, molecular biological, cell biological, pharmacological, physiological, psychophysical, clinical, anatomical, cognitive, and biotechnological aspects of neuroscience. The journal publishes both original research articles and review articles. Experimental Neurobiology is an open access, peer-reviewed online journal. The journal is published jointly by The Korean Society for Brain and Neural Sciences & The Korean Society for Neurodegenerative Disease.
期刊最新文献
Bidirectional Control of Emotional Behaviors by Excitatory and Inhibitory Neurons in the Orbitofrontal Cortex. Systemic Inflammation Decreases Initial Brain Injury but Attenuates Neurite Extension and Synapse Formation during the Repair of Injured Brains. The Impact of Odor Category Similarity on Multimedia Experience. β-PIX-d, a Member of the ARHGEF7 Guanine Nucleotide Exchange Factor Family, Activates Rac1 and Induces Neuritogenesis in Primary Cortical Neurons. Generation of Astrocyte-specific BEST1 Conditional Knockout Mouse with Reduced Tonic GABA Inhibition in the Brain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1