Uten Yarach , Itthi Chatnuntawech , Congyu Liao , Surat Teerapittayanon , Siddharth Srinivasan Iyer , Tae Hyung Kim , Justin Haldar , Jaejin Cho , Berkin Bilgic , Yuxin Hu , Brian Hargreaves , Kawin Setsompop
{"title":"Blip-up blip-down circular EPI (BUDA-cEPI) for distortion-free dMRI with rapid unrolled deep learning reconstruction","authors":"Uten Yarach , Itthi Chatnuntawech , Congyu Liao , Surat Teerapittayanon , Siddharth Srinivasan Iyer , Tae Hyung Kim , Justin Haldar , Jaejin Cho , Berkin Bilgic , Yuxin Hu , Brian Hargreaves , Kawin Setsompop","doi":"10.1016/j.mri.2024.110277","DOIUrl":null,"url":null,"abstract":"<div><div>Purpose: BUDA-cEPI has been shown to achieve high-quality, high-resolution diffusion magnetic resonance imaging (dMRI) with fast acquisition time, particularly when used in conjunction with S-LORAKS reconstruction. However, this comes at a cost of more complex reconstruction that is computationally prohibitive. In this work we develop rapid reconstruction pipeline for BUDA-cEPI to pave the way for its deployment in routine clinical and neuroscientific applications. The proposed reconstruction includes the development of ML-based unrolled reconstruction as well as rapid ML-based B0 and eddy current estimations that are needed. The architecture of the unroll network was designed so that it can mimic S-LORAKS regularization well, with the addition of virtual coil channels.</div><div>Methods: BUDA-cEPI RUN-UP – a model-based framework that incorporates off-resonance and eddy current effects was unrolled through an artificial neural network with only six gradient updates. The unrolled network alternates between data consistency (i.e., forward BUDA-cEPI and its adjoint) and regularization steps where U-Net plays a role as the regularizer. To handle the partial Fourier effect, the virtual coil concept was also introduced into the reconstruction to effectively take advantage of the smooth phase prior and trained to predict the ground-truth images obtained by BUDA-cEPI with S-LORAKS.</div><div>Results: The introduction of the Virtual Coil concept into the unrolled network was shown to be key to achieving high-quality reconstruction for BUDA-cEPI. With the inclusion of an additional non-diffusion image (b-value = 0 s/mm<sup>2</sup>), a slight improvement was observed, with the normalized root mean square error further reduced by approximately 5 %. The reconstruction times for S-LORAKS and the proposed unrolled networks were approximately 225 and 3 s per slice, respectively.</div><div>Conclusion: BUDA-cEPI RUN-UP was shown to reduce the reconstruction time by ∼88× when compared to the state-of-the-art technique, while preserving imaging details as demonstrated through DTI application.</div></div>","PeriodicalId":18165,"journal":{"name":"Magnetic resonance imaging","volume":"115 ","pages":"Article 110277"},"PeriodicalIF":2.1000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Magnetic resonance imaging","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0730725X24002583","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: BUDA-cEPI has been shown to achieve high-quality, high-resolution diffusion magnetic resonance imaging (dMRI) with fast acquisition time, particularly when used in conjunction with S-LORAKS reconstruction. However, this comes at a cost of more complex reconstruction that is computationally prohibitive. In this work we develop rapid reconstruction pipeline for BUDA-cEPI to pave the way for its deployment in routine clinical and neuroscientific applications. The proposed reconstruction includes the development of ML-based unrolled reconstruction as well as rapid ML-based B0 and eddy current estimations that are needed. The architecture of the unroll network was designed so that it can mimic S-LORAKS regularization well, with the addition of virtual coil channels.
Methods: BUDA-cEPI RUN-UP – a model-based framework that incorporates off-resonance and eddy current effects was unrolled through an artificial neural network with only six gradient updates. The unrolled network alternates between data consistency (i.e., forward BUDA-cEPI and its adjoint) and regularization steps where U-Net plays a role as the regularizer. To handle the partial Fourier effect, the virtual coil concept was also introduced into the reconstruction to effectively take advantage of the smooth phase prior and trained to predict the ground-truth images obtained by BUDA-cEPI with S-LORAKS.
Results: The introduction of the Virtual Coil concept into the unrolled network was shown to be key to achieving high-quality reconstruction for BUDA-cEPI. With the inclusion of an additional non-diffusion image (b-value = 0 s/mm2), a slight improvement was observed, with the normalized root mean square error further reduced by approximately 5 %. The reconstruction times for S-LORAKS and the proposed unrolled networks were approximately 225 and 3 s per slice, respectively.
Conclusion: BUDA-cEPI RUN-UP was shown to reduce the reconstruction time by ∼88× when compared to the state-of-the-art technique, while preserving imaging details as demonstrated through DTI application.
期刊介绍:
Magnetic Resonance Imaging (MRI) is the first international multidisciplinary journal encompassing physical, life, and clinical science investigations as they relate to the development and use of magnetic resonance imaging. MRI is dedicated to both basic research, technological innovation and applications, providing a single forum for communication among radiologists, physicists, chemists, biochemists, biologists, engineers, internists, pathologists, physiologists, computer scientists, and mathematicians.