{"title":"Functional dissection of prenyltransferases reveals roles in endocytosis and secretory vacuolar sorting in type 2-ME49 strain of <i>Toxoplasma gondii</i>.","authors":"Qiangqiang Wang, Yuanfeng Wang, Jinghui Wang, Wenjie Tian, Naiwen Zhang, Shaojun Long, Shuai Wang","doi":"10.1080/21505594.2024.2432681","DOIUrl":null,"url":null,"abstract":"<p><p>Prenyltransferases act essential roles in the prenylation modification, which is significant for proteins, like small GTPases to execute various important activities in <i>Toxoplasma gondii</i> (<i>T.gondii</i>). The structures and partial functions of prenyltransferases (FTase, GGTase-I, and GGTase-II) in prenylation process have been dissected in <i>T. gondii</i>. However, the cellular effects of prenyltransferases on type 2-ME49 strain of <i>Toxoplasma</i> are largely unknown. To address this gap, CRISPR/Cas9-based gene-editing technology was employed to construct conditional knockdown strains of prenyltransferases in ME49 strain. Subsequent observation of ingestion ability of host cytosolic molecules (e.g, green fluorescent protein [GFP]) and status of secretory vacuolar sorting post-knockdown of prenyltransferases revealed significant findings. Our study demonstrated that degradation of FTase and GGTase-II notably affected the trafficking of endocytic GFP and vacuolar secretory trafficking to rhoptry bulb. Additionally, depletion of GGTase-II led to disordered endoplasmic reticulum and microtubules, as well as impaired gliding motility. The integrity of mitochondrion was damaged after degradation of GGTase-I. These findings underscore the critical functions of prenyltransferases in endocytosis and secretory vacuolar sorting in ME49 strain of <i>T. gondii</i>, thereby enhancing our understanding of prenyltransferases as potential drug targets.</p>","PeriodicalId":23747,"journal":{"name":"Virulence","volume":" ","pages":"2432681"},"PeriodicalIF":5.5000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11601059/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Virulence","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/21505594.2024.2432681","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/26 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Prenyltransferases act essential roles in the prenylation modification, which is significant for proteins, like small GTPases to execute various important activities in Toxoplasma gondii (T.gondii). The structures and partial functions of prenyltransferases (FTase, GGTase-I, and GGTase-II) in prenylation process have been dissected in T. gondii. However, the cellular effects of prenyltransferases on type 2-ME49 strain of Toxoplasma are largely unknown. To address this gap, CRISPR/Cas9-based gene-editing technology was employed to construct conditional knockdown strains of prenyltransferases in ME49 strain. Subsequent observation of ingestion ability of host cytosolic molecules (e.g, green fluorescent protein [GFP]) and status of secretory vacuolar sorting post-knockdown of prenyltransferases revealed significant findings. Our study demonstrated that degradation of FTase and GGTase-II notably affected the trafficking of endocytic GFP and vacuolar secretory trafficking to rhoptry bulb. Additionally, depletion of GGTase-II led to disordered endoplasmic reticulum and microtubules, as well as impaired gliding motility. The integrity of mitochondrion was damaged after degradation of GGTase-I. These findings underscore the critical functions of prenyltransferases in endocytosis and secretory vacuolar sorting in ME49 strain of T. gondii, thereby enhancing our understanding of prenyltransferases as potential drug targets.
期刊介绍:
Virulence is a fully open access peer-reviewed journal. All articles will (if accepted) be available for anyone to read anywhere, at any time immediately on publication.
Virulence is the first international peer-reviewed journal of its kind to focus exclusively on microbial pathogenicity, the infection process and host-pathogen interactions. To address the new infectious challenges, emerging infectious agents and antimicrobial resistance, there is a clear need for interdisciplinary research.