Tea Polyphenols Reduced Obesity by Modulating Gut Microbiota-SCFAs-Barrier and Inflammation in High-Fat Diet-Induced Mice

IF 4.5 2区 农林科学 Q1 FOOD SCIENCE & TECHNOLOGY Molecular Nutrition & Food Research Pub Date : 2024-11-22 DOI:10.1002/mnfr.202400685
Baoming Tian, Pinjiao Huang, Yizhu Pan, Hong Gu, Kai Yang, Zhengxun Wei, Xiangchun Zhang
{"title":"Tea Polyphenols Reduced Obesity by Modulating Gut Microbiota-SCFAs-Barrier and Inflammation in High-Fat Diet-Induced Mice","authors":"Baoming Tian,&nbsp;Pinjiao Huang,&nbsp;Yizhu Pan,&nbsp;Hong Gu,&nbsp;Kai Yang,&nbsp;Zhengxun Wei,&nbsp;Xiangchun Zhang","doi":"10.1002/mnfr.202400685","DOIUrl":null,"url":null,"abstract":"<div>\n \n <section>\n \n <h3> Scope</h3>\n \n <p>Obesity by high-fat diets (HFDs) is a chronic metabolic disorder that poses a significant threat to human health. Tea polyphenols (TPs) can prevent obesity caused by HFD by modulating gut microbiota.</p>\n </section>\n \n <section>\n \n <h3> Methods and results</h3>\n \n <p>To explore the function of TP in mitigating the effects of obesity and inflammation, mice are fed HFDs either with or without TP. TP supplementation effectively attenuates HFD-induced weight gain, liver and adipose tissue accumulation, while also improving liver fat content as well as colon and ileum tissue morphology. TP supplementation leads to a downregulation of lipid accumulation genes and an upregulation of lipid-decomposition genes. Moreover, TP increases <i>Blautia</i> and <i>Faecalibaculum</i> while reducing the <i>Colidextribacter</i> and short-chain fatty acids in HFD-induced mice, significantly activates G protein-coupled receptors, inhibits histone deacetylases, enhances intestinal tight junction expression levels, reduces intestinal permeability, and thereby preserves intestinal barrier integrity. Additionally, TP markedly suppresses the expression of inflammatory cytokines and inhibits the activation of TLR4 signaling pathways.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>These findings suggest that TP holds great promise for improving both obesity management and alleviating intestinal inflammation, and provides a clue for understanding the antiobesity effects of TP.</p>\n </section>\n </div>","PeriodicalId":212,"journal":{"name":"Molecular Nutrition & Food Research","volume":"68 24","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Nutrition & Food Research","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mnfr.202400685","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Scope

Obesity by high-fat diets (HFDs) is a chronic metabolic disorder that poses a significant threat to human health. Tea polyphenols (TPs) can prevent obesity caused by HFD by modulating gut microbiota.

Methods and results

To explore the function of TP in mitigating the effects of obesity and inflammation, mice are fed HFDs either with or without TP. TP supplementation effectively attenuates HFD-induced weight gain, liver and adipose tissue accumulation, while also improving liver fat content as well as colon and ileum tissue morphology. TP supplementation leads to a downregulation of lipid accumulation genes and an upregulation of lipid-decomposition genes. Moreover, TP increases Blautia and Faecalibaculum while reducing the Colidextribacter and short-chain fatty acids in HFD-induced mice, significantly activates G protein-coupled receptors, inhibits histone deacetylases, enhances intestinal tight junction expression levels, reduces intestinal permeability, and thereby preserves intestinal barrier integrity. Additionally, TP markedly suppresses the expression of inflammatory cytokines and inhibits the activation of TLR4 signaling pathways.

Conclusion

These findings suggest that TP holds great promise for improving both obesity management and alleviating intestinal inflammation, and provides a clue for understanding the antiobesity effects of TP.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
茶多酚通过调节高脂饮食诱导小鼠的肠道微生物群-SCFAs-屏障和炎症减轻肥胖症
高脂饮食(HFD)导致的肥胖是一种慢性代谢紊乱,对人类健康构成严重威胁。茶多酚(TPs)可以通过调节肠道微生物群来预防高脂饮食引起的肥胖。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Nutrition & Food Research
Molecular Nutrition & Food Research 工程技术-食品科技
CiteScore
8.70
自引率
1.90%
发文量
250
审稿时长
1.7 months
期刊介绍: Molecular Nutrition & Food Research is a primary research journal devoted to health, safety and all aspects of molecular nutrition such as nutritional biochemistry, nutrigenomics and metabolomics aiming to link the information arising from related disciplines: Bioactivity: Nutritional and medical effects of food constituents including bioavailability and kinetics. Immunology: Understanding the interactions of food and the immune system. Microbiology: Food spoilage, food pathogens, chemical and physical approaches of fermented foods and novel microbial processes. Chemistry: Isolation and analysis of bioactive food ingredients while considering environmental aspects.
期刊最新文献
Protocatechuic Acid Reduces Liver Fatty Acid Uptake in HFD-Fed Mice Associated With the Inhibition of DHHC5-Mediated CD36 Palmitoylation Enhancing Colorectal Cancer Treatment: The Role of Bifidobacterium in Modulating Gut Immunity and Mitigating Capecitabine-Induced Toxicity Issue Information: Mol. Nutr. Food Res. 6'25 Improvement of Glucose Metabolism by Pennogenin 3-O-β-Chacotrioside via Activation of IRS/PI3K/Akt Signaling and Mitochondrial Respiration in Insulin-Resistant Hepatocytes Mucus Barrier Weakens the Inhibitory Activity of Pyrogallol-Based Polyphenols Against α-Glucosidase
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1