Yi Wang, Suqing Lan, Laiming Zhang, Yunxuan Li, Ziyang Deng, Xingqian Ye, Haibo Pan, Shiguo Chen
{"title":"Mucus Barrier Weakens the Inhibitory Activity of Pyrogallol-Based Polyphenols Against α-Glucosidase","authors":"Yi Wang, Suqing Lan, Laiming Zhang, Yunxuan Li, Ziyang Deng, Xingqian Ye, Haibo Pan, Shiguo Chen","doi":"10.1002/mnfr.202400838","DOIUrl":null,"url":null,"abstract":"Scope: Polyphenols reportedly possess strong in vitro α-glucosidase inhibitory activity, even higher than acarbose, but their in vivo regulation on postprandial hyperglycemia is poor. So far this typical problem of polyphenols remains unsolved, greatly hindering their application as α-glucosidase inhibitors. Methods and results: Here, we identify the small intestinal mucus layer acts as a barrier to significantly reduce in vivo α-glucosidase inhibitory activity of epigallocatechin gallate, prodelphinidin B digallate (proDB DG), and proanthocyanidins from Chinese bayberry leaves. Multispectroscopy, rheology, solvent method, and molecular docking analysis showed that these pyrogallol-based polyphenols, especially proDB DG strongly interacted with small intestinal mucins through hydrogen bonding, hydrophobic interactions, and electrostatic interactions. These interactions block polyphenols from penetrating the mucus layer, resulting in their low binding rates with α-glucosidase in vivo. Besides, polyphenol-driven aggregation of the mucins enhanced the barrier function and reduced the permeability of the mucus layer, resulting in delayed digestion and absorption of carbohydrates. Conclusions: The mucus barrier weakens the inhibitory activity of pyrogallol-based polyphenols against α-glucosidase. Hence, overcoming the mucus barrier is a promising strategy to improve the regulation of pyrogallol-based polyphenols against postprandial hyperglycemia in vivo, which helps them to become novel α-glucosidase inhibitors in the clinic.","PeriodicalId":212,"journal":{"name":"Molecular Nutrition & Food Research","volume":"91 1","pages":""},"PeriodicalIF":4.5000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Nutrition & Food Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1002/mnfr.202400838","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Scope: Polyphenols reportedly possess strong in vitro α-glucosidase inhibitory activity, even higher than acarbose, but their in vivo regulation on postprandial hyperglycemia is poor. So far this typical problem of polyphenols remains unsolved, greatly hindering their application as α-glucosidase inhibitors. Methods and results: Here, we identify the small intestinal mucus layer acts as a barrier to significantly reduce in vivo α-glucosidase inhibitory activity of epigallocatechin gallate, prodelphinidin B digallate (proDB DG), and proanthocyanidins from Chinese bayberry leaves. Multispectroscopy, rheology, solvent method, and molecular docking analysis showed that these pyrogallol-based polyphenols, especially proDB DG strongly interacted with small intestinal mucins through hydrogen bonding, hydrophobic interactions, and electrostatic interactions. These interactions block polyphenols from penetrating the mucus layer, resulting in their low binding rates with α-glucosidase in vivo. Besides, polyphenol-driven aggregation of the mucins enhanced the barrier function and reduced the permeability of the mucus layer, resulting in delayed digestion and absorption of carbohydrates. Conclusions: The mucus barrier weakens the inhibitory activity of pyrogallol-based polyphenols against α-glucosidase. Hence, overcoming the mucus barrier is a promising strategy to improve the regulation of pyrogallol-based polyphenols against postprandial hyperglycemia in vivo, which helps them to become novel α-glucosidase inhibitors in the clinic.
期刊介绍:
Molecular Nutrition & Food Research is a primary research journal devoted to health, safety and all aspects of molecular nutrition such as nutritional biochemistry, nutrigenomics and metabolomics aiming to link the information arising from related disciplines:
Bioactivity: Nutritional and medical effects of food constituents including bioavailability and kinetics.
Immunology: Understanding the interactions of food and the immune system.
Microbiology: Food spoilage, food pathogens, chemical and physical approaches of fermented foods and novel microbial processes.
Chemistry: Isolation and analysis of bioactive food ingredients while considering environmental aspects.