An oxycarbide-derived-carbon supported nickel ferrite/copper tungstate ternary composite for enhanced electrocatalytic activity towards the oxygen evolution reaction

IF 3.5 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Dalton Transactions Pub Date : 2024-11-22 DOI:10.1039/d4dt02688h
Kumar Sanket, Uttam Kumar, Indrajit Sinha, Shantanu K. Behera
{"title":"An oxycarbide-derived-carbon supported nickel ferrite/copper tungstate ternary composite for enhanced electrocatalytic activity towards the oxygen evolution reaction","authors":"Kumar Sanket, Uttam Kumar, Indrajit Sinha, Shantanu K. Behera","doi":"10.1039/d4dt02688h","DOIUrl":null,"url":null,"abstract":"This work integrates a unique porous carbon with a binary heterostructured NiFe<small><sub>2</sub></small>O<small><sub>4</sub></small>/CuWO<small><sub>4</sub></small> composite to enhance electrocatalytic activity towards the oxygen evolution reaction. The NiFe<small><sub>2</sub></small>O<small><sub>4</sub></small>/CuWO<small><sub>4</sub></small> binary heterostructure was prepared through the conventional co-precipitation method. The porous carbon with turbostratic order was obtained by the selective etching of SiO<small><sub>2</sub></small> nanodomains from preceramic polymer-derived SiOC. Finally, an optimum ternary NiFe<small><sub>2</sub></small>O<small><sub>4</sub></small>/CuWO<small><sub>4</sub></small>/C composite was prepared through hydrothermal treatment. Microstructural findings reveal that NiFe<small><sub>2</sub></small>O<small><sub>4</sub></small>/CuWO<small><sub>4</sub></small> nanocomposite particulates are distributed homogeneously within the porous carbon matrix. Electrochemical findings reveal that the optimum composite with uniform carbon distribution requires an overpotential of 360 mV to attain a current density of 10 mA cm<small><sup>−2</sup></small> with the lowest Tafel slope of 43 mV dec<small><sup>−1</sup></small> as opposed to 450 mV and 55 mV dec<small><sup>−1</sup></small>, respectively, for the composites without carbon. The ternary composite demonstrated a stable potential over a prolonged period of 24 hours with enhanced mass activity. The improved electrocatalytic efficiency of the material is attributed to the presence of graphitic carbon and ample porosity within the additive carbon phase, which enhances the catalyst–electrolyte interaction interface area and electronic conductivity.","PeriodicalId":71,"journal":{"name":"Dalton Transactions","volume":"19 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Dalton Transactions","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4dt02688h","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

This work integrates a unique porous carbon with a binary heterostructured NiFe2O4/CuWO4 composite to enhance electrocatalytic activity towards the oxygen evolution reaction. The NiFe2O4/CuWO4 binary heterostructure was prepared through the conventional co-precipitation method. The porous carbon with turbostratic order was obtained by the selective etching of SiO2 nanodomains from preceramic polymer-derived SiOC. Finally, an optimum ternary NiFe2O4/CuWO4/C composite was prepared through hydrothermal treatment. Microstructural findings reveal that NiFe2O4/CuWO4 nanocomposite particulates are distributed homogeneously within the porous carbon matrix. Electrochemical findings reveal that the optimum composite with uniform carbon distribution requires an overpotential of 360 mV to attain a current density of 10 mA cm−2 with the lowest Tafel slope of 43 mV dec−1 as opposed to 450 mV and 55 mV dec−1, respectively, for the composites without carbon. The ternary composite demonstrated a stable potential over a prolonged period of 24 hours with enhanced mass activity. The improved electrocatalytic efficiency of the material is attributed to the presence of graphitic carbon and ample porosity within the additive carbon phase, which enhances the catalyst–electrolyte interaction interface area and electronic conductivity.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种碳氧化合物衍生的碳支撑镍铁氧体/钨酸铜三元复合材料,用于增强氧进化反应的电催化活性
本研究将独特的多孔碳与二元异质结构的 NiFe2O4/CuWO4 复合材料相结合,以提高氧进化反应的电催化活性。NiFe2O4/CuWO4 二元异质结构是通过传统的共沉淀法制备的。通过从预陶瓷聚合物衍生的 SiOC 中选择性刻蚀 SiO2 纳米域,获得了具有湍流序的多孔碳。最后,通过水热处理制备出了最佳的 NiFe2O4/CuWO4/C 三元复合材料。微观结构研究结果表明,NiFe2O4/CuWO4 纳米复合材料颗粒均匀地分布在多孔碳基体中。电化学研究结果表明,碳分布均匀的最佳复合材料需要 360 mV 的过电位才能达到 10 mA cm-2 的电流密度,最低的塔菲尔斜率为 43 mV dec-1,而不含碳的复合材料的过电位和塔菲尔斜率分别为 450 mV 和 55 mV dec-1。三元复合材料在 24 小时的长时间内电位稳定,质量活性增强。该材料电催化效率的提高归功于添加碳相中石墨碳的存在和丰富的孔隙率,这增强了催化剂与电解质相互作用的界面面积和电子传导性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Dalton Transactions
Dalton Transactions 化学-无机化学与核化学
CiteScore
6.60
自引率
7.50%
发文量
1832
审稿时长
1.5 months
期刊介绍: Dalton Transactions is a journal for all areas of inorganic chemistry, which encompasses the organometallic, bioinorganic and materials chemistry of the elements, with applications including synthesis, catalysis, energy conversion/storage, electrical devices and medicine. Dalton Transactions welcomes high-quality, original submissions in all of these areas and more, where the advancement of knowledge in inorganic chemistry is significant.
期刊最新文献
An oxycarbide-derived-carbon supported nickel ferrite/copper tungstate ternary composite for enhanced electrocatalytic activity towards the oxygen evolution reaction Yb5Rh6Sn18: a valence fluctuating system with ultra-low thermal conductivity New talent: Americas 2024 Error compensated MOF-based ReRAM array for encrypted logical operations Two-step Spin Transition around Room Temperature in a FeIII Complex
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1