Chiral recognition of amino acids through homochiral metallacycle [ZnCl2L]2.

IF 5.8 3区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS Biomaterials Science Pub Date : 2024-11-22 DOI:10.1039/d4bm01119h
Maria Maqbool, Khurshid Ayub
{"title":"Chiral recognition of amino acids through homochiral metallacycle [ZnCl<sub>2</sub>L]<sub>2</sub>.","authors":"Maria Maqbool, Khurshid Ayub","doi":"10.1039/d4bm01119h","DOIUrl":null,"url":null,"abstract":"<p><p>Chiral recognition holds tremendous significance in both life science and chemistry. The ability to differentiate between enantiomers is crucial because one enantiomer typically holds greater biological relevance while its counterpart is often not only unnecessary but also potentially harmful. In this regard, homochiral metallacycle [ZnCl<sub>2</sub>L]<sub>2</sub> is used in this study to understand and differentiate between the <i>R</i> and <i>S</i> enantiomers of amino acids (alanine, proline, serine, and valine). The electronic, geometric, and thermodynamic stabilities of the amino acid enantiomers inside the metallacycle are determined through various analyses. The greater interaction energy (<i>E</i><sub>int</sub>) is obtained for the ser@metallacycle complexes <i>i.e.</i>, -33.03 and -30.75 kcal mol<sup>-1</sup>, respectively for the <i>S</i> and <i>R</i> enantiomers. The highest chiral discrimination energy of 3.11 kcal mol<sup>-1</sup> is achieved for ala@metallacycle complexes. Regarding the electronic properties, the frontier molecular orbital (FMO) analysis indicates that the energy gap decreases after complexation, which is confirmed through density of states (DOS) analysis. Moreover, natural bond orbital (NBO) analysis determines the amount and direction of charge transfer <i>i.e.</i>, from metallacycle towards amino acids. The maximum NBO charge transfer is observed for <i>S</i>-pro@metallacycle complex <i>i.e.</i>, -0.291 |<i>e</i>|. Electron density difference (EDD) analysis further proves the direction of charge transfer. Noncovalent interaction index (NCI) and quantum theory of atoms in molecules (QTAIM) analyses demonstrate that the noncovalent interactions present between the host and guest are the weak van der Waals forces and hydrogen bonding. The results of NCI and QTAIM analyses for all the complexes are in alignment with those of the interaction energy (<i>E</i><sub>int</sub>) and chiral discrimination energy (<i>E</i><sub>chir</sub>) analyses, <i>i.e.</i>, significantly greater non-bonding interactions are observed for the complexes with greater <i>E</i><sub>chir</sub>, <i>i.e.</i>, for ala@metallacycle. Overall, our analyses demonstrate the excellent chiral discrimination ability of metallacycle towards chiral molecules, <i>i.e.</i>, for enantiomers of amino acids through host-guest supramolecular chemistry.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1039/d4bm01119h","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Chiral recognition holds tremendous significance in both life science and chemistry. The ability to differentiate between enantiomers is crucial because one enantiomer typically holds greater biological relevance while its counterpart is often not only unnecessary but also potentially harmful. In this regard, homochiral metallacycle [ZnCl2L]2 is used in this study to understand and differentiate between the R and S enantiomers of amino acids (alanine, proline, serine, and valine). The electronic, geometric, and thermodynamic stabilities of the amino acid enantiomers inside the metallacycle are determined through various analyses. The greater interaction energy (Eint) is obtained for the ser@metallacycle complexes i.e., -33.03 and -30.75 kcal mol-1, respectively for the S and R enantiomers. The highest chiral discrimination energy of 3.11 kcal mol-1 is achieved for ala@metallacycle complexes. Regarding the electronic properties, the frontier molecular orbital (FMO) analysis indicates that the energy gap decreases after complexation, which is confirmed through density of states (DOS) analysis. Moreover, natural bond orbital (NBO) analysis determines the amount and direction of charge transfer i.e., from metallacycle towards amino acids. The maximum NBO charge transfer is observed for S-pro@metallacycle complex i.e., -0.291 |e|. Electron density difference (EDD) analysis further proves the direction of charge transfer. Noncovalent interaction index (NCI) and quantum theory of atoms in molecules (QTAIM) analyses demonstrate that the noncovalent interactions present between the host and guest are the weak van der Waals forces and hydrogen bonding. The results of NCI and QTAIM analyses for all the complexes are in alignment with those of the interaction energy (Eint) and chiral discrimination energy (Echir) analyses, i.e., significantly greater non-bonding interactions are observed for the complexes with greater Echir, i.e., for ala@metallacycle. Overall, our analyses demonstrate the excellent chiral discrimination ability of metallacycle towards chiral molecules, i.e., for enantiomers of amino acids through host-guest supramolecular chemistry.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过同手性金属环 [ZnCl2L]2 识别氨基酸的手性。
手性识别在生命科学和化学领域都具有重要意义。区分对映体的能力至关重要,因为一种对映体通常具有更大的生物相关性,而其对映体往往不仅没有必要,而且还可能有害。在这方面,本研究利用同手性金属环 [ZnCl2L]2 来了解和区分氨基酸(丙氨酸、脯氨酸、丝氨酸和缬氨酸)的 R 对映体和 S 对映体。通过各种分析确定了金属环内氨基酸对映体的电子、几何和热力学稳定性。丝氨酸@金属环复合物的相互作用能(Eint)较大,即 S 和 R 对映体的相互作用能分别为 -33.03 和 -30.75 kcal mol-1。ala@metallacycle 复合物的手性辨别能最高,为 3.11 kcal mol-1。在电子特性方面,前沿分子轨道(FMO)分析表明,络合后能隙减小,这一点通过状态密度(DOS)分析得到了证实。此外,自然键轨道(NBO)分析确定了电荷转移的数量和方向,即从金属环到氨基酸的电荷转移。在 S-pro@metallacycle 复合物中观察到了最大的自然键电荷转移,即 -0.291 |e|。电子密度差(EDD)分析进一步证明了电荷转移的方向。非共价相互作用指数(NCI)和分子中原子量子理论(QTAIM)分析表明,主客体之间的非共价相互作用是弱范德华力和氢键。所有复合物的 NCI 和 QTAIM 分析结果与相互作用能(Eint)和手性辨别能(Echir)分析结果一致,即 Echir 越大的复合物,即 ala@metallacycle 的非键相互作用明显越大。总之,我们的分析表明金属环对手性分子具有出色的手性鉴别能力,即通过主客体超分子化学鉴别氨基酸的对映体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biomaterials Science
Biomaterials Science MATERIALS SCIENCE, BIOMATERIALS-
CiteScore
11.50
自引率
4.50%
发文量
556
期刊介绍: Biomaterials Science is an international high impact journal exploring the science of biomaterials and their translation towards clinical use. Its scope encompasses new concepts in biomaterials design, studies into the interaction of biomaterials with the body, and the use of materials to answer fundamental biological questions.
期刊最新文献
Aliphatic polycarbonates with acid degradable ketal side groups as multi-pH-responsive immunodrug nanocarriers. Chiral recognition of amino acids through homochiral metallacycle [ZnCl2L]2. Dimethysiloxane polymer for the effective transdermal delivery of donepezil in Alzheimer's disease treatment. Trends in protein derived materials for wound care applications. Back cover
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1