Mechanistic insights into adsorption-desorption of PFOA on biochars: Effects of biomass feedstock and pyrolysis temperature, and implication of desorption hysteresis.
{"title":"Mechanistic insights into adsorption-desorption of PFOA on biochars: Effects of biomass feedstock and pyrolysis temperature, and implication of desorption hysteresis.","authors":"Tongshuai Wang, Jingqi Wu, Tao Hu, Congcong Wang, Shijia Li, Zhixiong Li, Jiawei Chen","doi":"10.1016/j.scitotenv.2024.177668","DOIUrl":null,"url":null,"abstract":"<p><p>Adsorptive removal of the emerging organic pollutant perfluorooctanoic acid (PFOA) from contaminated water using biochar is a promising cost-effective approach. To determine the stability of PFOA adsorption on biochar, the thermodynamic analysis of the adsorption-desorption behavior is essential. This study comprehensively investigated the adsorption and desorption of PFOA on biochars derived from maple sawdust, peanut shells and corn stalks, pyrolyzed at peak temperatures of 400, 600 and 800 °C. The findings indicated that the micropore volume of the biochars was key to PFOA adsorption, with peanut shell biochar produced at 800 °C showing the highest adsorption capacity of 16.75 mg/g, attributed to its larger micropore volume (0.22 m<sup>3</sup>/g). Thermodynamic analysis showed that the negative values of ∆G<sup>0</sup> of PFOA adsorption ranged from -2.24 to -5.38 kJ/mol, confirmed that the process was spontaneous and involved physical pore-filling. However, the close similarity between the adsorption and desorption isotherms, coupled with a low hysteresis coefficient, clarified that the PFOA adsorption was unstable and prone to desorption. The thermodynamic insights from this study highlighted that lignin-rich biochar produced at high temperature with high micropore content was very favorable for the effective adsorptive removal of PFOA, while the long-term adsorption stability should not be overlooked in the remediation applications.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":" ","pages":"177668"},"PeriodicalIF":8.2000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2024.177668","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Adsorptive removal of the emerging organic pollutant perfluorooctanoic acid (PFOA) from contaminated water using biochar is a promising cost-effective approach. To determine the stability of PFOA adsorption on biochar, the thermodynamic analysis of the adsorption-desorption behavior is essential. This study comprehensively investigated the adsorption and desorption of PFOA on biochars derived from maple sawdust, peanut shells and corn stalks, pyrolyzed at peak temperatures of 400, 600 and 800 °C. The findings indicated that the micropore volume of the biochars was key to PFOA adsorption, with peanut shell biochar produced at 800 °C showing the highest adsorption capacity of 16.75 mg/g, attributed to its larger micropore volume (0.22 m3/g). Thermodynamic analysis showed that the negative values of ∆G0 of PFOA adsorption ranged from -2.24 to -5.38 kJ/mol, confirmed that the process was spontaneous and involved physical pore-filling. However, the close similarity between the adsorption and desorption isotherms, coupled with a low hysteresis coefficient, clarified that the PFOA adsorption was unstable and prone to desorption. The thermodynamic insights from this study highlighted that lignin-rich biochar produced at high temperature with high micropore content was very favorable for the effective adsorptive removal of PFOA, while the long-term adsorption stability should not be overlooked in the remediation applications.
期刊介绍:
The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere.
The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.