Enhancing seagrass restoration success: Detecting and quantifying mechanisms of wave-induced dislodgement.

IF 8.2 1区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Science of the Total Environment Pub Date : 2024-12-21 DOI:10.1016/j.scitotenv.2024.178055
Lars Kamperdicks, Matteo Lattuada, Tadhg O Corcora, Torsten Schlurmann, Maike Paul
{"title":"Enhancing seagrass restoration success: Detecting and quantifying mechanisms of wave-induced dislodgement.","authors":"Lars Kamperdicks, Matteo Lattuada, Tadhg O Corcora, Torsten Schlurmann, Maike Paul","doi":"10.1016/j.scitotenv.2024.178055","DOIUrl":null,"url":null,"abstract":"<p><p>Seagrass meadows are one of the most productive ecosystems of the world. Seagrass enhances biodiversity, sequesters CO<sub>2</sub> and functions as a coastal protection measure by mitigating waves and enhancing sedimentation. However, populations are declining in many regions and natural recolonization of bare sediment beds is protracted and unlikely. The widely used single shoot transplantation method for seagrass restoration is time-consuming and expensive, thus it is important that chances of survival are high. Dislodgement due to wave action poses a particular high risk during the first days after transplantation. This study replicates the transplantation method with a total of 224 harvested shoots (Zostera marina) planted in a wave flume under real sea state conditions. After varying rooting periods in cultivation tanks with low hydrodynamic exposure, the shoots together with their surrounding soil were installed inside the flume and exposed to increasing sea state in intermediate water depth (near-bottom maximum orbital velocity MOV = 0.25-0.59 m/s) for 250 min (≈5000 waves). Half the plants were protected by a willow fence, serving as a restoration facilitator. Our results show that dislodgement is not driven by singular exceptional large waves, but by the wave-induced stress from long-term cyclic loads (fatigue). Furthermore, we found that shoots with a rooting period <12 days are especially vulnerable. We also detected that dislodgement is critically impacted by belowground biomass and leaf surface. The deployed restoration facilitator enhances shoot survival by 22.4 % and mitigates the effect of the rooting period. The findings indicate that wave exposure and shoot morphometrics are crucial to shoot survival in the first 12 days after transplantation. Considering morphometrics in shoot selection for transplantation may thus reduce the need for restoration facilitation. In conclusion, our research facilitates planning of seagrass restoration including the identification of suitable weather windows, restoration facilitator necessity, and shoot traits.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":"959 ","pages":"178055"},"PeriodicalIF":8.2000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2024.178055","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Seagrass meadows are one of the most productive ecosystems of the world. Seagrass enhances biodiversity, sequesters CO2 and functions as a coastal protection measure by mitigating waves and enhancing sedimentation. However, populations are declining in many regions and natural recolonization of bare sediment beds is protracted and unlikely. The widely used single shoot transplantation method for seagrass restoration is time-consuming and expensive, thus it is important that chances of survival are high. Dislodgement due to wave action poses a particular high risk during the first days after transplantation. This study replicates the transplantation method with a total of 224 harvested shoots (Zostera marina) planted in a wave flume under real sea state conditions. After varying rooting periods in cultivation tanks with low hydrodynamic exposure, the shoots together with their surrounding soil were installed inside the flume and exposed to increasing sea state in intermediate water depth (near-bottom maximum orbital velocity MOV = 0.25-0.59 m/s) for 250 min (≈5000 waves). Half the plants were protected by a willow fence, serving as a restoration facilitator. Our results show that dislodgement is not driven by singular exceptional large waves, but by the wave-induced stress from long-term cyclic loads (fatigue). Furthermore, we found that shoots with a rooting period <12 days are especially vulnerable. We also detected that dislodgement is critically impacted by belowground biomass and leaf surface. The deployed restoration facilitator enhances shoot survival by 22.4 % and mitigates the effect of the rooting period. The findings indicate that wave exposure and shoot morphometrics are crucial to shoot survival in the first 12 days after transplantation. Considering morphometrics in shoot selection for transplantation may thus reduce the need for restoration facilitation. In conclusion, our research facilitates planning of seagrass restoration including the identification of suitable weather windows, restoration facilitator necessity, and shoot traits.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Science of the Total Environment
Science of the Total Environment 环境科学-环境科学
CiteScore
17.60
自引率
10.20%
发文量
8726
审稿时长
2.4 months
期刊介绍: The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere. The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.
期刊最新文献
Evaluating spatial effect of transportation planning factors on taxi CO2 emissions. Enhancing seagrass restoration success: Detecting and quantifying mechanisms of wave-induced dislodgement. Plastic pollution and marine mussels: Unravelling disparities in research efforts, biological effects and influences of global warming. Insights into organophosphorus insecticide malathion induced reproductive toxicity and intergenerational effect in zebrafish (Danio rerio). Modeling of heteroaggregation driven buoyant microplastic settling: Interaction with multiple clay particles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1