{"title":"Polycyclic aromatics-derived benzene carboxylic acids (BPCAs) as a fast predictor of the genotoxicity of combustion particles.","authors":"Chuxin Yao, Jiao Tang, Yangzhi Mo, Guangcai Zhong, Xiaofei Geng, Xin Yi, Qianyu Zhang, Jun Li, Huimin Ma, Shizhen Zhao, Gan Zhang","doi":"10.1016/j.scitotenv.2024.177632","DOIUrl":null,"url":null,"abstract":"<p><p>Polycyclic aromatic compounds (PAC) are common toxics in combustion particles. Numerous studies on health effects of PAC mixtures focused on limited compounds. It's still challenging to quantify complex PAC mixtures in combustion particles. Recently, benzene polycarboxylic acids (BPCAs) method, which involves conversion of PAC mixtures into a few BPCAs, has been used to quantify complex PAC mixtures in particles. In this study, in vitro biossays were used to evaluate the toxicity of extractable organic matter (EOM) in combustion particles. Analysis with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) identified ~1000 molecules, mostly aromatics (84.47 ± 5.32 %), that positively associate with the EOM toxicity (p < 0.05). We further employed BPCAs method to quantify PAC mixtures in the EOM of combustion particles, and observed the toxicity (especially genotoxicity) of EOM linearly increases with the abundance of PAC mixtures (r<sup>2</sup>: 0.68-0.89, p < 0.05), as it is shown by a data set referring to all source types including biomass burning, coal combustion and vehicle exhaust. The genotoxicity of PAC mixtures in EOM of combustion particles was estimated to be 10-13 times that of benzo[a]pyrene at the same mass concentration. Target analysis of 48 PAC was carried out, but a weaker relationship is found for the toxicity of EOM and the abundance of 48 PAC. Taken together, we suggest PAC-derived BPCAs as a fast predictor of the genotoxicity of combustion particles, which could be promising in routine monitoring of PAC pollution in the air.</p>","PeriodicalId":422,"journal":{"name":"Science of the Total Environment","volume":" ","pages":"177632"},"PeriodicalIF":8.2000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of the Total Environment","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.scitotenv.2024.177632","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/23 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Polycyclic aromatic compounds (PAC) are common toxics in combustion particles. Numerous studies on health effects of PAC mixtures focused on limited compounds. It's still challenging to quantify complex PAC mixtures in combustion particles. Recently, benzene polycarboxylic acids (BPCAs) method, which involves conversion of PAC mixtures into a few BPCAs, has been used to quantify complex PAC mixtures in particles. In this study, in vitro biossays were used to evaluate the toxicity of extractable organic matter (EOM) in combustion particles. Analysis with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) identified ~1000 molecules, mostly aromatics (84.47 ± 5.32 %), that positively associate with the EOM toxicity (p < 0.05). We further employed BPCAs method to quantify PAC mixtures in the EOM of combustion particles, and observed the toxicity (especially genotoxicity) of EOM linearly increases with the abundance of PAC mixtures (r2: 0.68-0.89, p < 0.05), as it is shown by a data set referring to all source types including biomass burning, coal combustion and vehicle exhaust. The genotoxicity of PAC mixtures in EOM of combustion particles was estimated to be 10-13 times that of benzo[a]pyrene at the same mass concentration. Target analysis of 48 PAC was carried out, but a weaker relationship is found for the toxicity of EOM and the abundance of 48 PAC. Taken together, we suggest PAC-derived BPCAs as a fast predictor of the genotoxicity of combustion particles, which could be promising in routine monitoring of PAC pollution in the air.
期刊介绍:
The Science of the Total Environment is an international journal dedicated to scientific research on the environment and its interaction with humanity. It covers a wide range of disciplines and seeks to publish innovative, hypothesis-driven, and impactful research that explores the entire environment, including the atmosphere, lithosphere, hydrosphere, biosphere, and anthroposphere.
The journal's updated Aims & Scope emphasizes the importance of interdisciplinary environmental research with broad impact. Priority is given to studies that advance fundamental understanding and explore the interconnectedness of multiple environmental spheres. Field studies are preferred, while laboratory experiments must demonstrate significant methodological advancements or mechanistic insights with direct relevance to the environment.