Tristan Martin, Gilles El Hage, Claude Barbeau, Michel W Bojanowski
{"title":"Computational hemodynamic pathophysiology of internal carotid artery blister aneurysms.","authors":"Tristan Martin, Gilles El Hage, Claude Barbeau, Michel W Bojanowski","doi":"10.1186/s12938-024-01306-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Blister aneurysms of the internal carotid artery (ICA) are rare and are primarily documented in the literature through small series and case reports. The intraoperative observation of a hemorrhage in the artery wall proximal to the aneurysmal bulge led to the hypothesis that some of these aneurysms might develop in a retrograde manner.</p><p><strong>Methods: </strong>We developed software to reconstruct the ICA with and without Type I and II blister aneurysms using patients' imagery as input to simulate hemodynamic conditions before and after their formation. Kinematic blood flow data before and after aneurysm formation were obtained using a finite volume solver. We compared the wall shear stress (WSS) distribution of the arterial wall prior to aneurysm formation.</p><p><strong>Results: </strong>In two out of four cases, WSS was significantly elevated on the dorsal wall of the supraclinoid segment of the ICA at the distal part of the future site of the aneurysm sac, suggesting that the aneurysm sac may ultimately develop in a retrograde fashion. Once the structural changes have been initiated, WSS gradient (WSSG) was significantly elevated at the proximal and distal boundaries of the bulging aneurysmal pouch. Low WSS and high WSSG at the proximal part of the aneurysm sac seem to contribute to the extension of the proximal intramural hematoma observed during blister aneurysm surgery.</p><p><strong>Conclusions: </strong>By enabling assessment of the impact of elevated WSS and its gradient, our computational pipeline supports the hypothesis that the development of blister aneurysms may occur either in a retrograde or anterograde fashion.</p>","PeriodicalId":8927,"journal":{"name":"BioMedical Engineering OnLine","volume":"23 1","pages":"118"},"PeriodicalIF":2.9000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11583455/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioMedical Engineering OnLine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12938-024-01306-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Objective: Blister aneurysms of the internal carotid artery (ICA) are rare and are primarily documented in the literature through small series and case reports. The intraoperative observation of a hemorrhage in the artery wall proximal to the aneurysmal bulge led to the hypothesis that some of these aneurysms might develop in a retrograde manner.
Methods: We developed software to reconstruct the ICA with and without Type I and II blister aneurysms using patients' imagery as input to simulate hemodynamic conditions before and after their formation. Kinematic blood flow data before and after aneurysm formation were obtained using a finite volume solver. We compared the wall shear stress (WSS) distribution of the arterial wall prior to aneurysm formation.
Results: In two out of four cases, WSS was significantly elevated on the dorsal wall of the supraclinoid segment of the ICA at the distal part of the future site of the aneurysm sac, suggesting that the aneurysm sac may ultimately develop in a retrograde fashion. Once the structural changes have been initiated, WSS gradient (WSSG) was significantly elevated at the proximal and distal boundaries of the bulging aneurysmal pouch. Low WSS and high WSSG at the proximal part of the aneurysm sac seem to contribute to the extension of the proximal intramural hematoma observed during blister aneurysm surgery.
Conclusions: By enabling assessment of the impact of elevated WSS and its gradient, our computational pipeline supports the hypothesis that the development of blister aneurysms may occur either in a retrograde or anterograde fashion.
期刊介绍:
BioMedical Engineering OnLine is an open access, peer-reviewed journal that is dedicated to publishing research in all areas of biomedical engineering.
BioMedical Engineering OnLine is aimed at readers and authors throughout the world, with an interest in using tools of the physical and data sciences and techniques in engineering to understand and solve problems in the biological and medical sciences. Topical areas include, but are not limited to:
Bioinformatics-
Bioinstrumentation-
Biomechanics-
Biomedical Devices & Instrumentation-
Biomedical Signal Processing-
Healthcare Information Systems-
Human Dynamics-
Neural Engineering-
Rehabilitation Engineering-
Biomaterials-
Biomedical Imaging & Image Processing-
BioMEMS and On-Chip Devices-
Bio-Micro/Nano Technologies-
Biomolecular Engineering-
Biosensors-
Cardiovascular Systems Engineering-
Cellular Engineering-
Clinical Engineering-
Computational Biology-
Drug Delivery Technologies-
Modeling Methodologies-
Nanomaterials and Nanotechnology in Biomedicine-
Respiratory Systems Engineering-
Robotics in Medicine-
Systems and Synthetic Biology-
Systems Biology-
Telemedicine/Smartphone Applications in Medicine-
Therapeutic Systems, Devices and Technologies-
Tissue Engineering