Development of a deep learning radiomics model combining lumbar CT, multi-sequence MRI, and clinical data to predict high-risk cage subsidence after lumbar fusion: a retrospective multicenter study.
{"title":"Development of a deep learning radiomics model combining lumbar CT, multi-sequence MRI, and clinical data to predict high-risk cage subsidence after lumbar fusion: a retrospective multicenter study.","authors":"Congying Zou, Ruiyuan Chen, Baodong Wang, Qi Fei, Hongxing Song, Lei Zang","doi":"10.1186/s12938-025-01355-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>To develop and validate a model that integrates clinical data, deep learning radiomics, and radiomic features to predict high-risk patients for cage subsidence (CS) after lumbar fusion.</p><p><strong>Methods: </strong>This study analyzed preoperative CT and MRI data from 305 patients undergoing lumbar fusion surgery from three centers. Using a deep learning model based on 3D vision transformations, the data were divided the dataset into training (n = 214), validation (n = 61), and test (n = 30) groups. Feature selection was performed using LASSO regression, followed by the development of a logistic regression model. The predictive ability of the model was assessed using various machine learning algorithms, and a combined clinical model was also established.</p><p><strong>Results: </strong>Ultimately, 11 traditional radiomic features, 5 deep learning radiomic features, and 1 clinical feature were selected. The combined model demonstrated strong predictive performance, with area under the curve (AUC) values of 0.941, 0.832, and 0.935 for the training, validation, and test groups, respectively. Notably, our model outperformed predictions made by two experienced surgeons.</p><p><strong>Conclusions: </strong>This study developed a robust predictive model that integrates clinical features and imaging data to identify high-risk patients for CS following lumbar fusion. This model has the potential to improve clinical decision-making and reduce the need for revision surgeries, easing the burden on healthcare systems.</p>","PeriodicalId":8927,"journal":{"name":"BioMedical Engineering OnLine","volume":"24 1","pages":"27"},"PeriodicalIF":2.9000,"publicationDate":"2025-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11872306/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioMedical Engineering OnLine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1186/s12938-025-01355-y","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: To develop and validate a model that integrates clinical data, deep learning radiomics, and radiomic features to predict high-risk patients for cage subsidence (CS) after lumbar fusion.
Methods: This study analyzed preoperative CT and MRI data from 305 patients undergoing lumbar fusion surgery from three centers. Using a deep learning model based on 3D vision transformations, the data were divided the dataset into training (n = 214), validation (n = 61), and test (n = 30) groups. Feature selection was performed using LASSO regression, followed by the development of a logistic regression model. The predictive ability of the model was assessed using various machine learning algorithms, and a combined clinical model was also established.
Results: Ultimately, 11 traditional radiomic features, 5 deep learning radiomic features, and 1 clinical feature were selected. The combined model demonstrated strong predictive performance, with area under the curve (AUC) values of 0.941, 0.832, and 0.935 for the training, validation, and test groups, respectively. Notably, our model outperformed predictions made by two experienced surgeons.
Conclusions: This study developed a robust predictive model that integrates clinical features and imaging data to identify high-risk patients for CS following lumbar fusion. This model has the potential to improve clinical decision-making and reduce the need for revision surgeries, easing the burden on healthcare systems.
期刊介绍:
BioMedical Engineering OnLine is an open access, peer-reviewed journal that is dedicated to publishing research in all areas of biomedical engineering.
BioMedical Engineering OnLine is aimed at readers and authors throughout the world, with an interest in using tools of the physical and data sciences and techniques in engineering to understand and solve problems in the biological and medical sciences. Topical areas include, but are not limited to:
Bioinformatics-
Bioinstrumentation-
Biomechanics-
Biomedical Devices & Instrumentation-
Biomedical Signal Processing-
Healthcare Information Systems-
Human Dynamics-
Neural Engineering-
Rehabilitation Engineering-
Biomaterials-
Biomedical Imaging & Image Processing-
BioMEMS and On-Chip Devices-
Bio-Micro/Nano Technologies-
Biomolecular Engineering-
Biosensors-
Cardiovascular Systems Engineering-
Cellular Engineering-
Clinical Engineering-
Computational Biology-
Drug Delivery Technologies-
Modeling Methodologies-
Nanomaterials and Nanotechnology in Biomedicine-
Respiratory Systems Engineering-
Robotics in Medicine-
Systems and Synthetic Biology-
Systems Biology-
Telemedicine/Smartphone Applications in Medicine-
Therapeutic Systems, Devices and Technologies-
Tissue Engineering