Advances in Artificially Designed Antibacterial Active Antimicrobial Peptides.

IF 3.5 2区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Biotechnology and Bioengineering Pub Date : 2024-11-22 DOI:10.1002/bit.28886
Ying Guo, Muhammad Haris Raza Farhan, Fei Gan, Xiaohan Yang, Yuxin Li, Lingli Huang, Xu Wang, Guyue Cheng
{"title":"Advances in Artificially Designed Antibacterial Active Antimicrobial Peptides.","authors":"Ying Guo, Muhammad Haris Raza Farhan, Fei Gan, Xiaohan Yang, Yuxin Li, Lingli Huang, Xu Wang, Guyue Cheng","doi":"10.1002/bit.28886","DOIUrl":null,"url":null,"abstract":"<p><p>Antibacterial resistance has emerged as a significant global concern, necessitating the urgent development of new antibacterial drugs. Antimicrobial peptides (AMPs) are naturally occurring peptides found in various organisms. Coupled with a wide range of antibacterial activity, AMPs are less likely to develop drug resistance and can act as potential agents for treating bacterial infections. However, their characteristics, such as low activity, instability, and toxicity, hinder their clinical application. Consequently, researchers are inclined towards artificial design and optimization based on natural AMPs. This review discusses the research advancements in the field of artificial designing and optimization of various AMPs. Moreover, it highlights various strategies for designing such peptides, aiming to provide valuable insights for developing novel AMPs.</p>","PeriodicalId":9168,"journal":{"name":"Biotechnology and Bioengineering","volume":" ","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology and Bioengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/bit.28886","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Antibacterial resistance has emerged as a significant global concern, necessitating the urgent development of new antibacterial drugs. Antimicrobial peptides (AMPs) are naturally occurring peptides found in various organisms. Coupled with a wide range of antibacterial activity, AMPs are less likely to develop drug resistance and can act as potential agents for treating bacterial infections. However, their characteristics, such as low activity, instability, and toxicity, hinder their clinical application. Consequently, researchers are inclined towards artificial design and optimization based on natural AMPs. This review discusses the research advancements in the field of artificial designing and optimization of various AMPs. Moreover, it highlights various strategies for designing such peptides, aiming to provide valuable insights for developing novel AMPs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工设计抗菌活性抗菌肽的进展。
抗菌药耐药性已成为全球关注的一个重要问题,因此迫切需要开发新的抗菌药。抗菌肽(AMPs)是存在于各种生物体内的天然肽。AMPs 具有广泛的抗菌活性,不易产生耐药性,可作为治疗细菌感染的潜在药物。然而,AMPs 的低活性、不稳定性和毒性等特点阻碍了它们在临床上的应用。因此,研究人员倾向于基于天然 AMPs 进行人工设计和优化。本综述讨论了人工设计和优化各种 AMPs 领域的研究进展。此外,它还重点介绍了设计此类多肽的各种策略,旨在为开发新型 AMPs 提供有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biotechnology and Bioengineering
Biotechnology and Bioengineering 工程技术-生物工程与应用微生物
CiteScore
7.90
自引率
5.30%
发文量
280
审稿时长
2.1 months
期刊介绍: Biotechnology & Bioengineering publishes Perspectives, Articles, Reviews, Mini-Reviews, and Communications to the Editor that embrace all aspects of biotechnology. These include: -Enzyme systems and their applications, including enzyme reactors, purification, and applied aspects of protein engineering -Animal-cell biotechnology, including media development -Applied aspects of cellular physiology, metabolism, and energetics -Biocatalysis and applied enzymology, including enzyme reactors, protein engineering, and nanobiotechnology -Biothermodynamics -Biofuels, including biomass and renewable resource engineering -Biomaterials, including delivery systems and materials for tissue engineering -Bioprocess engineering, including kinetics and modeling of biological systems, transport phenomena in bioreactors, bioreactor design, monitoring, and control -Biosensors and instrumentation -Computational and systems biology, including bioinformatics and genomic/proteomic studies -Environmental biotechnology, including biofilms, algal systems, and bioremediation -Metabolic and cellular engineering -Plant-cell biotechnology -Spectroscopic and other analytical techniques for biotechnological applications -Synthetic biology -Tissue engineering, stem-cell bioengineering, regenerative medicine, gene therapy and delivery systems The editors will consider papers for publication based on novelty, their immediate or future impact on biotechnological processes, and their contribution to the advancement of biochemical engineering science. Submission of papers dealing with routine aspects of bioprocessing, description of established equipment, and routine applications of established methodologies (e.g., control strategies, modeling, experimental methods) is discouraged. Theoretical papers will be judged based on the novelty of the approach and their potential impact, or on their novel capability to predict and elucidate experimental observations.
期刊最新文献
Expression of Viral DNA Polymerase in Synthetic Recombinant Adeno‐Associated Virus Producer Cell Line Enhances Full Particle Productivity Advances in Artificially Designed Antibacterial Active Antimicrobial Peptides. Regeneration of Spent Culture Media for Sustainable and Continuous mAb Production via Ion Concentration Polarization. Streamlined Clarification and Capture Process for Monoclonal Antibodies Using Fluidized Bed Centrifugation and Multi-Column Chromatography With Membrane Adsorbers. Adaptation of Aglycosylated Monoclonal Antibodies for Improved Production in Komagataella phaffii.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1