{"title":"Endoplasmic reticulum stress-mediated apoptosis and autophagy in osteoarthritis: from molecular mechanisms to therapeutic applications.","authors":"Yifan Lu, Jing Zhou, Hong Wang, Hua Gao, Eryu Ning, Zhiqiang Shao, Xing Yang, Yuefeng Hao","doi":"10.1016/j.cstres.2024.11.005","DOIUrl":null,"url":null,"abstract":"<p><p>Osteoarthritis (OA) is characterized primarily by the degeneration of articular cartilage, with a high prevalence and disability rate. The functional phenotype of chondrocytes, as the sole cell type within cartilage, is vital for OA progression. Due to the avascular nature of cartilage and its limited regenerative capacity, repair following injury poses significant challenges. Various cellular stressors, including hypoxia, nutrient deprivation, oxidative stress, and collagen mutations, can lead to the accumulation of misfolded proteins in the endoplasmic reticulum (ER), resulting in ER stress (ERS). In response to restore ER homeostasis as well as cellular vitality and function, a series of adaptive mechanisms are triggered, including the unfolded protein response (UPR), ER-associated degradation (ERAD), and ER-phagy. Prolonged or severe ERS may exceed the adaptive capacity of cells, leading to dysregulation in apoptosis and autophagy-key pathogenic factors contributing to chondrocyte damage and OA progression. This review examines the relationship between ERS in OA chondrocytes and both apoptosis and autophagy in order to identify potential therapeutic targets and strategies for prevention and treatment of OA.</p>","PeriodicalId":9684,"journal":{"name":"Cell Stress & Chaperones","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Stress & Chaperones","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cstres.2024.11.005","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Osteoarthritis (OA) is characterized primarily by the degeneration of articular cartilage, with a high prevalence and disability rate. The functional phenotype of chondrocytes, as the sole cell type within cartilage, is vital for OA progression. Due to the avascular nature of cartilage and its limited regenerative capacity, repair following injury poses significant challenges. Various cellular stressors, including hypoxia, nutrient deprivation, oxidative stress, and collagen mutations, can lead to the accumulation of misfolded proteins in the endoplasmic reticulum (ER), resulting in ER stress (ERS). In response to restore ER homeostasis as well as cellular vitality and function, a series of adaptive mechanisms are triggered, including the unfolded protein response (UPR), ER-associated degradation (ERAD), and ER-phagy. Prolonged or severe ERS may exceed the adaptive capacity of cells, leading to dysregulation in apoptosis and autophagy-key pathogenic factors contributing to chondrocyte damage and OA progression. This review examines the relationship between ERS in OA chondrocytes and both apoptosis and autophagy in order to identify potential therapeutic targets and strategies for prevention and treatment of OA.
骨关节炎(OA)的主要特征是关节软骨退化,发病率和致残率都很高。软骨细胞作为软骨内唯一的细胞类型,其功能表型对 OA 的发展至关重要。由于软骨的无血管性质及其有限的再生能力,损伤后的修复面临着巨大的挑战。各种细胞应激因素,包括缺氧、营养匮乏、氧化应激和胶原突变,都可能导致折叠错误的蛋白质在内质网(ER)中堆积,造成ER应激(ERS)。为了恢复ER的平衡以及细胞的活力和功能,一系列适应机制被触发,包括未折叠蛋白反应(UPR)、ER相关降解(ERAD)和ER吞噬。长期或严重的ERS可能会超出细胞的适应能力,导致细胞凋亡和自噬失调--这是导致软骨细胞损伤和OA进展的主要致病因素。本综述探讨了 OA 软骨细胞的 ERS 与细胞凋亡和自噬之间的关系,以确定预防和治疗 OA 的潜在治疗靶点和策略。
期刊介绍:
Cell Stress and Chaperones is an integrative journal that bridges the gap between laboratory model systems and natural populations. The journal captures the eclectic spirit of the cellular stress response field in a single, concentrated source of current information. Major emphasis is placed on the effects of climate change on individual species in the natural environment and their capacity to adapt. This emphasis expands our focus on stress biology and medicine by linking climate change effects to research on cellular stress responses of animals, micro-organisms and plants.