Computed tomography-based radiomics and body composition model for predicting hepatic decompensation.

Q2 Medicine Oncotarget Pub Date : 2024-11-22 DOI:10.18632/oncotarget.28673
Yashbir Singh, John E Eaton, Sudhakar K Venkatesh, Bradley J Erickson
{"title":"Computed tomography-based radiomics and body composition model for predicting hepatic decompensation.","authors":"Yashbir Singh, John E Eaton, Sudhakar K Venkatesh, Bradley J Erickson","doi":"10.18632/oncotarget.28673","DOIUrl":null,"url":null,"abstract":"<p><p>Primary sclerosing cholangitis (PSC) is a chronic liver disease characterized by inflammation and scarring of the bile ducts, which can lead to cirrhosis and hepatic decompensation. The study aimed to explore the potential value of computational radiomics, a field that extracts quantitative features from medical images, in predicting whether or not PSC patients had hepatic decompensation. We used an in-house developed deep learning model called the body composition model, which quantifies body composition from computed tomography (CT) into four compartments: subcutaneous adipose tissue (SAT), skeletal muscle (SKM), visceral adipose tissue (VAT), and intermuscular adipose tissue (IMAT). We extracted radiomics features from all four body composition compartments and used them to build a predictive model in the training cohort. The predictive model demonstrated good performance in validation cohorts for predicting hepatic decompensation, with an accuracy score of 0.97, a precision score of 1.0, and an area under the curve (AUC) score of 0.97. Computational radiomics using CT images shows promise in predicting hepatic decompensation in primary sclerosing cholangitis patients. Our model achieved high accuracy, but predicting future events remains challenging. Further research is needed to validate clinical utility and limitations.</p>","PeriodicalId":19499,"journal":{"name":"Oncotarget","volume":"15 ","pages":"809-813"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11584029/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oncotarget","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18632/oncotarget.28673","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

Primary sclerosing cholangitis (PSC) is a chronic liver disease characterized by inflammation and scarring of the bile ducts, which can lead to cirrhosis and hepatic decompensation. The study aimed to explore the potential value of computational radiomics, a field that extracts quantitative features from medical images, in predicting whether or not PSC patients had hepatic decompensation. We used an in-house developed deep learning model called the body composition model, which quantifies body composition from computed tomography (CT) into four compartments: subcutaneous adipose tissue (SAT), skeletal muscle (SKM), visceral adipose tissue (VAT), and intermuscular adipose tissue (IMAT). We extracted radiomics features from all four body composition compartments and used them to build a predictive model in the training cohort. The predictive model demonstrated good performance in validation cohorts for predicting hepatic decompensation, with an accuracy score of 0.97, a precision score of 1.0, and an area under the curve (AUC) score of 0.97. Computational radiomics using CT images shows promise in predicting hepatic decompensation in primary sclerosing cholangitis patients. Our model achieved high accuracy, but predicting future events remains challenging. Further research is needed to validate clinical utility and limitations.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于计算机断层扫描的放射组学和身体成分模型用于预测肝功能失代偿。
原发性硬化性胆管炎(PSC)是一种以胆管炎症和瘢痕为特征的慢性肝病,可导致肝硬化和肝功能失代偿。本研究旨在探索计算放射组学(从医学影像中提取定量特征的领域)在预测 PSC 患者是否出现肝功能失代偿方面的潜在价值。我们使用了内部开发的深度学习模型--身体成分模型,该模型将计算机断层扫描(CT)中的身体成分量化为四个部分:皮下脂肪组织(SAT)、骨骼肌(SKM)、内脏脂肪组织(VAT)和肌间脂肪组织(IMAT)。我们从所有四个身体成分区划中提取了放射组学特征,并利用它们在训练队列中建立了一个预测模型。在验证队列中,该预测模型在预测肝功能失代偿方面表现良好,准确度为 0.97 分,精确度为 1.0 分,曲线下面积 (AUC) 为 0.97 分。利用 CT 图像的计算放射组学有望预测原发性硬化性胆管炎患者的肝功能失代偿。我们的模型达到了很高的准确性,但预测未来的事件仍具有挑战性。还需要进一步的研究来验证其临床实用性和局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Oncotarget
Oncotarget Oncogenes-CELL BIOLOGY
CiteScore
6.60
自引率
0.00%
发文量
129
审稿时长
1.5 months
期刊介绍: Information not localized
期刊最新文献
Advancements in cell-penetrating monoclonal antibody treatment. B7-H4: A potential therapeutic target in adenoid cystic carcinoma. Computed tomography-based radiomics and body composition model for predicting hepatic decompensation. Mesenchymal stem cells - the secret agents of cancer immunotherapy: Promises, challenges, and surprising twists. Retraction: Hyperglycemia via activation of thromboxane A2 receptor impairs the integrity and function of blood-brain barrier in microvascular endothelial cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1