Evaluation of the microbial community in various saline alkaline-soils driven by soil factors of the Hetao Plain, Inner Mongolia.

IF 3.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Scientific Reports Pub Date : 2024-11-22 DOI:10.1038/s41598-024-80328-y
Xiao-Yu Zhao, Ju-Lin Gao, Xiao-Fang Yu, Qing-Geer Borjigin, Jiawei Qu, Bi-Zhou Zhang, Sai-Nan Zhang, Qiang Li, Jiang-An Guo, Dong-Bo Li
{"title":"Evaluation of the microbial community in various saline alkaline-soils driven by soil factors of the Hetao Plain, Inner Mongolia.","authors":"Xiao-Yu Zhao, Ju-Lin Gao, Xiao-Fang Yu, Qing-Geer Borjigin, Jiawei Qu, Bi-Zhou Zhang, Sai-Nan Zhang, Qiang Li, Jiang-An Guo, Dong-Bo Li","doi":"10.1038/s41598-024-80328-y","DOIUrl":null,"url":null,"abstract":"<p><p>Soil microbial communities play a crucial role in maintaining diverse ecosystem functions within the saline-alkali soil ecosystems. Therefore, in this study, we collected various saline-alkaline soils from across the Inner Mongolia Hetao irrigation area. The soil chemical properties were analyzed, and the microbial diversity of bacteria and fungi was measured using 16 S rRNA and ITS rRNA amplicon sequencing. The dynamic relationship between the soil microbial community and soil factors was analyzed using the ABT (Aggregate Enhanced tree) model, the co-occurrence network, and the structural equation model. The results indicated that electrical conductivity (EC) was the biggest driving force of various saline-alkaline soils, affecting the community structure of bacteria (22.80%) and fungi (21.30%). The soil samples were categorized into three treatment levels based on their EC values: the low-salinity group (L, EC: 0-1 ms/cm, n = 10), the medium-salinity group (M, EC: 1-2 ms/cm, n = 8), and the high-salinity group (H, EC > 2 ms/cm, n = 6). The results demonstrated a negative correlation between microbial abundance and salinity-alkalinity, while revealing an enhanced interrelationship among species. The alterations in bacterial (12.36%) and fungal (22.92%) communities in various saline-alkali soils were primarily driven by saline-alkali ions, which served as the principal direct factors. The negative correlation between EC and SOM exhibited the highest magnitude, whereas the positive correlation between soil organic carbon and EC demonstrated the greatest strength. Therefore, it was further substantiated that EC played a pivotal role in shaping the distinct microbial communities in saline-alkali soils.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"14 1","pages":"28931"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11582701/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-80328-y","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Soil microbial communities play a crucial role in maintaining diverse ecosystem functions within the saline-alkali soil ecosystems. Therefore, in this study, we collected various saline-alkaline soils from across the Inner Mongolia Hetao irrigation area. The soil chemical properties were analyzed, and the microbial diversity of bacteria and fungi was measured using 16 S rRNA and ITS rRNA amplicon sequencing. The dynamic relationship between the soil microbial community and soil factors was analyzed using the ABT (Aggregate Enhanced tree) model, the co-occurrence network, and the structural equation model. The results indicated that electrical conductivity (EC) was the biggest driving force of various saline-alkaline soils, affecting the community structure of bacteria (22.80%) and fungi (21.30%). The soil samples were categorized into three treatment levels based on their EC values: the low-salinity group (L, EC: 0-1 ms/cm, n = 10), the medium-salinity group (M, EC: 1-2 ms/cm, n = 8), and the high-salinity group (H, EC > 2 ms/cm, n = 6). The results demonstrated a negative correlation between microbial abundance and salinity-alkalinity, while revealing an enhanced interrelationship among species. The alterations in bacterial (12.36%) and fungal (22.92%) communities in various saline-alkali soils were primarily driven by saline-alkali ions, which served as the principal direct factors. The negative correlation between EC and SOM exhibited the highest magnitude, whereas the positive correlation between soil organic carbon and EC demonstrated the greatest strength. Therefore, it was further substantiated that EC played a pivotal role in shaping the distinct microbial communities in saline-alkali soils.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
内蒙古河套平原土壤因子驱动的各种盐碱地微生物群落评价
土壤微生物群落在维持盐碱地生态系统的多种生态系统功能方面发挥着至关重要的作用。因此,本研究在内蒙古河套灌区采集了多种盐碱地土壤。对土壤化学性质进行了分析,并利用 16 S rRNA 和 ITS rRNA 扩增序列测定了细菌和真菌的微生物多样性。利用 ABT(聚合增强树)模型、共生网络和结构方程模型分析了土壤微生物群落与土壤因子之间的动态关系。结果表明,导电率(EC)是各种盐碱土的最大驱动力,影响了细菌(22.80%)和真菌(21.30%)的群落结构。根据 EC 值将土壤样本分为三个处理等级:低盐度组(L,EC:0-1 毫秒/厘米,n = 10)、中盐度组(M,EC:1-2 毫秒/厘米,n = 8)和高盐度组(H,EC > 2 毫秒/厘米,n = 6)。结果表明,微生物丰度与盐度-碱度之间呈负相关,同时揭示了物种之间的相互关系。各种盐碱土壤中细菌群落(12.36%)和真菌群落(22.92%)的变化主要是由盐碱离子引起的,盐碱离子是主要的直接因素。导电率与土壤有机质之间的负相关性最大,而土壤有机碳与导电率之间的正相关性最强。因此,这进一步证实了导电率在形成盐碱地独特微生物群落方面起着关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
期刊最新文献
High temperature wear and corrosion behavior of detonation sprayed Fe-based amorphous coatings. Influence of unhealthy diet and sedentary behavior on the oral health-related quality of life of 12-year-old Brazilian adolescents. Microplastics in sea ice drifted to the Shiretoko Peninsula, the southern end of the Sea of Okhotsk. ADAR1 could be a potential diagnostic target for intrauterine infection patients. Circulating YKL-40 levels but not CHI3L1 or TRIB1 gene variants predict long-term outcomes in patients with angiographically confirmed multivessel coronary artery disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1