{"title":"Integrating metabolomics into the diagnosis and investigation of anthelmintic resistance.","authors":"Amanda O Shaver, Erik C Andersen","doi":"10.1016/j.pt.2024.10.020","DOIUrl":null,"url":null,"abstract":"<p><p>Anthelmintic resistance (AR) in parasitic nematodes poses a global health problem in livestock and domestic animals and is an emerging problem in humans. Consequently, we must understand the mechanisms of AR, including target-site resistance (TSR), in which mutations affect drug binding, and non-target site resistance (NTSR), which involves alterations in drug metabolism and detoxification processes. Because much of the focus has been on TSR, NTSR has received less attention. Here, we describe how metabolomics approaches using Caenorhabditis elegans offer the ability to disentangle nematode drug metabolism, identify metabolic changes associated with resistance, uncover novel biomarkers, and enhance diagnostic methods.</p>","PeriodicalId":23327,"journal":{"name":"Trends in parasitology","volume":" ","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2024-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in parasitology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.pt.2024.10.020","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PARASITOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Anthelmintic resistance (AR) in parasitic nematodes poses a global health problem in livestock and domestic animals and is an emerging problem in humans. Consequently, we must understand the mechanisms of AR, including target-site resistance (TSR), in which mutations affect drug binding, and non-target site resistance (NTSR), which involves alterations in drug metabolism and detoxification processes. Because much of the focus has been on TSR, NTSR has received less attention. Here, we describe how metabolomics approaches using Caenorhabditis elegans offer the ability to disentangle nematode drug metabolism, identify metabolic changes associated with resistance, uncover novel biomarkers, and enhance diagnostic methods.
寄生线虫的抗药性(AR)是家畜和家养动物的一个全球性健康问题,也是人类的一个新问题。因此,我们必须了解 AR 的机制,包括靶点抗药性(TSR)和非靶点抗药性(NTSR),前者是指突变影响了药物的结合,后者则涉及药物代谢和解毒过程的改变。由于大部分研究都集中在 TSR 上,NTSR 受到的关注较少。在这里,我们将介绍如何利用秀丽隐杆线虫的代谢组学方法来揭示线虫的药物代谢、确定与耐药性相关的代谢变化、发现新型生物标记物并改进诊断方法。
期刊介绍:
Since its inception as Parasitology Today in 1985, Trends in Parasitology has evolved into a highly esteemed review journal of global significance, reflecting the importance of medical and veterinary parasites worldwide. The journal serves as a hub for communication among researchers across all disciplines of parasitology, encompassing endoparasites, ectoparasites, transmission vectors, and susceptible hosts.
Each monthly issue of Trends in Parasitology offers authoritative, cutting-edge, and yet accessible review articles, providing a balanced and comprehensive overview, along with opinion pieces offering personal and novel perspectives. Additionally, the journal publishes a variety of short articles designed to inform and stimulate thoughts in a lively and widely-accessible manner. These include Science & Society (discussing the interface between parasitology and the general public), Spotlight (highlighting recently published research articles), Forum (presenting single-point hypotheses), Parasite/Vector of the Month (featuring a modular display of the selected species), Letter (providing responses to recent articles in Trends in Parasitology), and Trendstalk (conducting interviews). Please note that the journal exclusively publishes literature reviews based on published data, with systematic reviews, meta-analysis, and unpublished primary research falling outside our scope.