Pub Date : 2025-01-29DOI: 10.1016/j.pt.2025.01.003
Sugandika Bullumulla, Lihua Xiao, Yaoyu Feng, Amanda Ash, Una Ryan, Amanda D Barbosa
Giardia is the most common protozoan cause of diarrhoeal illness in humans worldwide. Despite this, our understanding of the zoonotic transmission of Giardia, and in particular the role of cattle as a zoonotic reservoir, is not well understood, due to the limitations of current typing systems and a recent taxonomic revision of the genus. Newly improved multilocus sequencing typing tools are not yet widely used and are not applicable to all species. However, data generated to date suggest that zoonotic transmission of Giardia of bovine origin is limited. Carefully designed epidemiological investigations using improved typing tools are essential to understand the extent of zoonotic transmission from cattle. Improved on-farm biosecurity measures are also needed to control the transmission of zoonotic Giardia in cattle.
{"title":"Update on transmission of zoonotic Giardia in cattle.","authors":"Sugandika Bullumulla, Lihua Xiao, Yaoyu Feng, Amanda Ash, Una Ryan, Amanda D Barbosa","doi":"10.1016/j.pt.2025.01.003","DOIUrl":"https://doi.org/10.1016/j.pt.2025.01.003","url":null,"abstract":"<p><p>Giardia is the most common protozoan cause of diarrhoeal illness in humans worldwide. Despite this, our understanding of the zoonotic transmission of Giardia, and in particular the role of cattle as a zoonotic reservoir, is not well understood, due to the limitations of current typing systems and a recent taxonomic revision of the genus. Newly improved multilocus sequencing typing tools are not yet widely used and are not applicable to all species. However, data generated to date suggest that zoonotic transmission of Giardia of bovine origin is limited. Carefully designed epidemiological investigations using improved typing tools are essential to understand the extent of zoonotic transmission from cattle. Improved on-farm biosecurity measures are also needed to control the transmission of zoonotic Giardia in cattle.</p>","PeriodicalId":23327,"journal":{"name":"Trends in parasitology","volume":" ","pages":""},"PeriodicalIF":7.0,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143075632","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-24DOI: 10.1016/j.pt.2024.12.015
Julius C R Hafalla, Steffen Borrmann, Kai Matuschewski
Metabolically active, genetically attenuated Plasmodium falciparum parasite lines are promising second-generation malaria vaccine candidates. Lamers et al. and Roozen et al. demonstrated in recent Phase 1/2a trials that GA2 parasites, designed to arrest late during liver-stage development and transmitted via mosquito bites, can induce substantial protection against sporozoite challenge infection.
{"title":"Genetically attenuated parasites show promise as a next-generation malaria vaccine.","authors":"Julius C R Hafalla, Steffen Borrmann, Kai Matuschewski","doi":"10.1016/j.pt.2024.12.015","DOIUrl":"https://doi.org/10.1016/j.pt.2024.12.015","url":null,"abstract":"<p><p>Metabolically active, genetically attenuated Plasmodium falciparum parasite lines are promising second-generation malaria vaccine candidates. Lamers et al. and Roozen et al. demonstrated in recent Phase 1/2a trials that GA2 parasites, designed to arrest late during liver-stage development and transmitted via mosquito bites, can induce substantial protection against sporozoite challenge infection.</p>","PeriodicalId":23327,"journal":{"name":"Trends in parasitology","volume":" ","pages":""},"PeriodicalIF":7.0,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143042366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-20DOI: 10.1016/j.pt.2025.01.001
Peter J Hotez
Neglected tropical diseases are accelerating because of climate change and urbanization to create new clusters of vast urban areas beset by poverty and environmental degradation. These hot and contaminated megacities could enable the rise of parasitic and other tropical infections. A new generation of antiparasitic vaccines will be needed.
{"title":"Vaccines in a time of global boiling and megacities.","authors":"Peter J Hotez","doi":"10.1016/j.pt.2025.01.001","DOIUrl":"https://doi.org/10.1016/j.pt.2025.01.001","url":null,"abstract":"<p><p>Neglected tropical diseases are accelerating because of climate change and urbanization to create new clusters of vast urban areas beset by poverty and environmental degradation. These hot and contaminated megacities could enable the rise of parasitic and other tropical infections. A new generation of antiparasitic vaccines will be needed.</p>","PeriodicalId":23327,"journal":{"name":"Trends in parasitology","volume":" ","pages":""},"PeriodicalIF":7.0,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143012378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-16DOI: 10.1016/j.pt.2024.12.014
Surendra K Prajapati, Kim C Williamson
Malaria mortality remains above 500 000 people annually, demonstrating the need for new and innovative control approaches. Using a genome-scale, functional screen of Plasmodium sexual replication, Sayers et al. identified over 300 genes essential for malaria transmission through the mosquito, providing many new candidates for drug and vaccine development.
{"title":"Genome-scale, functional screen of Plasmodium sexual replication.","authors":"Surendra K Prajapati, Kim C Williamson","doi":"10.1016/j.pt.2024.12.014","DOIUrl":"https://doi.org/10.1016/j.pt.2024.12.014","url":null,"abstract":"<p><p>Malaria mortality remains above 500 000 people annually, demonstrating the need for new and innovative control approaches. Using a genome-scale, functional screen of Plasmodium sexual replication, Sayers et al. identified over 300 genes essential for malaria transmission through the mosquito, providing many new candidates for drug and vaccine development.</p>","PeriodicalId":23327,"journal":{"name":"Trends in parasitology","volume":" ","pages":""},"PeriodicalIF":7.0,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143012345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-14DOI: 10.1016/j.pt.2024.12.012
Martina Lisnerová, Hana Pecková, Ivan Fiala
{"title":"Neoparamoeba perurans.","authors":"Martina Lisnerová, Hana Pecková, Ivan Fiala","doi":"10.1016/j.pt.2024.12.012","DOIUrl":"https://doi.org/10.1016/j.pt.2024.12.012","url":null,"abstract":"","PeriodicalId":23327,"journal":{"name":"Trends in parasitology","volume":" ","pages":""},"PeriodicalIF":7.0,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143012347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-14DOI: 10.1016/j.pt.2024.12.011
Raul Yhossef Tito Tadeo, Christen Rune Stensvold
Gut single-celled eukaryotes (GSCEs) are found in billions of people worldwide, but we still know little about their functions and relationships in human gut ecology. Lately, retrospective analysis of bacterial data obtained by next-generation sequencing (NGS) methods has been used to identify links between GSCEs, gut bacteria, host metabolism, and host phenotypical traits, suggesting possible direct or indirect associations to favorable gut microbiome features and other health parameters. Here, we highlight some of the pitfalls related to the research strategy typically used so far and propose action points that could pave the way for a more accurate understanding of GSCEs in human health and disease.
{"title":"Pitfalls in gut single-cell eukaryote research.","authors":"Raul Yhossef Tito Tadeo, Christen Rune Stensvold","doi":"10.1016/j.pt.2024.12.011","DOIUrl":"https://doi.org/10.1016/j.pt.2024.12.011","url":null,"abstract":"<p><p>Gut single-celled eukaryotes (GSCEs) are found in billions of people worldwide, but we still know little about their functions and relationships in human gut ecology. Lately, retrospective analysis of bacterial data obtained by next-generation sequencing (NGS) methods has been used to identify links between GSCEs, gut bacteria, host metabolism, and host phenotypical traits, suggesting possible direct or indirect associations to favorable gut microbiome features and other health parameters. Here, we highlight some of the pitfalls related to the research strategy typically used so far and propose action points that could pave the way for a more accurate understanding of GSCEs in human health and disease.</p>","PeriodicalId":23327,"journal":{"name":"Trends in parasitology","volume":" ","pages":""},"PeriodicalIF":7.0,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143012375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-13DOI: 10.1016/j.pt.2024.12.003
Georgia Kirby, Alexander G C Vaux, Heather M Ferguson, Jolyon M Medlock
West Nile virus (WNV) is a zoonotic mosquito-borne virus which is emerging across Europe, largely due to climate and other environmental changes. Detection of WNV at increasingly northern latitudes raises concern that WNV may be introduced to Britain, where ecological conditions could eventually support sustained transmission. Establishment of WNV depends on spatial and temporal overlap between infectious migratory birds and native vectors. However, understanding of the distributions and phenology of key vector species in Britain is incomplete and must be updated to prioritise activities for WNV surveillance and response. Here, we review recent findings related to WNV ecology in continental Europe and the ecology of British mosquito species in order to evaluate the risk of WNV establishment in Britain.
{"title":"Ecological risk factors for the establishment of West Nile virus in Britain.","authors":"Georgia Kirby, Alexander G C Vaux, Heather M Ferguson, Jolyon M Medlock","doi":"10.1016/j.pt.2024.12.003","DOIUrl":"https://doi.org/10.1016/j.pt.2024.12.003","url":null,"abstract":"<p><p>West Nile virus (WNV) is a zoonotic mosquito-borne virus which is emerging across Europe, largely due to climate and other environmental changes. Detection of WNV at increasingly northern latitudes raises concern that WNV may be introduced to Britain, where ecological conditions could eventually support sustained transmission. Establishment of WNV depends on spatial and temporal overlap between infectious migratory birds and native vectors. However, understanding of the distributions and phenology of key vector species in Britain is incomplete and must be updated to prioritise activities for WNV surveillance and response. Here, we review recent findings related to WNV ecology in continental Europe and the ecology of British mosquito species in order to evaluate the risk of WNV establishment in Britain.</p>","PeriodicalId":23327,"journal":{"name":"Trends in parasitology","volume":" ","pages":""},"PeriodicalIF":7.0,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142984976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}