Rishant Pal , Nayanika Ghosh , Nur M.M. Kalimullah , Azeem Ahmad , Frank Melandsø , Anowarul Habib
{"title":"Subsurface damage identification and localization in PZT ceramics using point contact excitation and detection: An image processing framework","authors":"Rishant Pal , Nayanika Ghosh , Nur M.M. Kalimullah , Azeem Ahmad , Frank Melandsø , Anowarul Habib","doi":"10.1016/j.ultras.2024.107516","DOIUrl":null,"url":null,"abstract":"<div><div>Piezoelectric sensors hold immense potential in structural health monitoring (SHM) applications. However, their performance can be deteriorated by defects and extreme weathering. Therefore, diagnosing the sensor before implementation is very crucial. Unreliable experimental methods and inaccurate damage detection algorithms are major concerns that need addressing to develop a robust damage detection framework. In this work, we propose a subsurface anomaly detection framework that uses the evolution of ultrasonic waves in spatial and temporal domains. This framework comprises three key components: a novel Coulomb coupling-based experimental approach to visualize ultrasonic wave interactions with microscale Lead Zirconate Titanate (PZT) subsurface defects, an advanced denoising algorithm using block matching 3D (BM3D) filtering to reduce noise, and a multiresolution dynamic mode decomposition (mrDMD) algorithm to identify subsurface defects in PZT. The results conclude that the proposed framework is robust, efficient, and can provide reliable detection and localization of damage even with significant measurement noise and without any reference damage-free counterpart of the PZT material.</div></div>","PeriodicalId":23522,"journal":{"name":"Ultrasonics","volume":"147 ","pages":"Article 107516"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ultrasonics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0041624X24002798","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0
Abstract
Piezoelectric sensors hold immense potential in structural health monitoring (SHM) applications. However, their performance can be deteriorated by defects and extreme weathering. Therefore, diagnosing the sensor before implementation is very crucial. Unreliable experimental methods and inaccurate damage detection algorithms are major concerns that need addressing to develop a robust damage detection framework. In this work, we propose a subsurface anomaly detection framework that uses the evolution of ultrasonic waves in spatial and temporal domains. This framework comprises three key components: a novel Coulomb coupling-based experimental approach to visualize ultrasonic wave interactions with microscale Lead Zirconate Titanate (PZT) subsurface defects, an advanced denoising algorithm using block matching 3D (BM3D) filtering to reduce noise, and a multiresolution dynamic mode decomposition (mrDMD) algorithm to identify subsurface defects in PZT. The results conclude that the proposed framework is robust, efficient, and can provide reliable detection and localization of damage even with significant measurement noise and without any reference damage-free counterpart of the PZT material.
期刊介绍:
Ultrasonics is the only internationally established journal which covers the entire field of ultrasound research and technology and all its many applications. Ultrasonics contains a variety of sections to keep readers fully informed and up-to-date on the whole spectrum of research and development throughout the world. Ultrasonics publishes papers of exceptional quality and of relevance to both academia and industry. Manuscripts in which ultrasonics is a central issue and not simply an incidental tool or minor issue, are welcomed.
As well as top quality original research papers and review articles by world renowned experts, Ultrasonics also regularly features short communications, a calendar of forthcoming events and special issues dedicated to topical subjects.