Slow oscillation-spindle coupling predicts sequence-based language learning.

IF 4.4 2区 医学 Q1 NEUROSCIENCES Journal of Neuroscience Pub Date : 2024-11-21 DOI:10.1523/JNEUROSCI.2193-23.2024
Zachariah R Cross, Randolph F Helfrich, Andrew W Corcoran, Adam J O Dede, Mark J Kohler, Scott W Coussens, Lena Zou-Williams, Matthias Schlesewsky, M Gareth Gaskell, Robert T Knight, Ina Bornkessel-Schlesewsky
{"title":"Slow oscillation-spindle coupling predicts sequence-based language learning.","authors":"Zachariah R Cross, Randolph F Helfrich, Andrew W Corcoran, Adam J O Dede, Mark J Kohler, Scott W Coussens, Lena Zou-Williams, Matthias Schlesewsky, M Gareth Gaskell, Robert T Knight, Ina Bornkessel-Schlesewsky","doi":"10.1523/JNEUROSCI.2193-23.2024","DOIUrl":null,"url":null,"abstract":"<p><p>Sentence comprehension involves the rapid decoding of both semantic and grammatical information, a process fundamental to communication. As with other complex cognitive processes, language comprehension relies, in part, on long-term memory. However, the electrophysiological mechanisms underpinning the initial encoding and generalisation of higher-order linguistic knowledge remain elusive, particularly from a sleep-based consolidation perspective. One candidate mechanism that may support the consolidation of higher-order language is the temporal coordination of slow oscillations (SO) and sleep spindles during non-rapid eye movement sleep (NREM). To examine this hypothesis, we analysed electroencephalographic (EEG) data recorded from 35 participants (M<sub>age</sub> = 25.4, SD = 7.10; 16 males) during an artificial language learning task, contrasting performance between individuals who were given an 8hr nocturnal sleep period or an equivalent period of wake. We found that sleep relative to wake was associated with superior performance for rules that followed a sequence-based word order. Post-sleep sequence-based word order processing was further associated with less task-related theta desynchronisation, an electrophysiological signature of successful memory consolidation, as well as cognitive control and working memory. Frontal NREM SO-spindle coupling was also positively associated with behavioural sensitivity to sequence-based word order rules, as well as with task-related theta power. As such, theta activity during retrieval of previously learned information correlates with SO-spindle coupling, thus linking neural activity in the sleeping and waking brain. Taken together, this study presents converging behavioral and neurophysiological evidence for a role of NREM SO-spindle coupling and task-related theta activity as signatures of successful memory consolidation and retrieval in the context of higher-order language learning.<b>Significance statement</b> The endogenous temporal coordination of neural oscillations supports information processing during both wake and sleep states. Here we demonstrate that slow oscillation-spindle coupling during non-rapid eye movement sleep predicts the consolidation of complex grammatical rules and modulates task-related oscillatory dynamics previously implicated in sentence processing. We show that increases in theta power predict enhanced sensitivity to grammatical violations after a period of sleep and strong slow oscillation-spindle coupling modulates subsequent task-related theta activity to influence behaviour. Our findings reveal a complex interaction between both wake- and sleep-related oscillatory dynamics during the early stages of language learning beyond the single word level.</p>","PeriodicalId":50114,"journal":{"name":"Journal of Neuroscience","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/JNEUROSCI.2193-23.2024","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Sentence comprehension involves the rapid decoding of both semantic and grammatical information, a process fundamental to communication. As with other complex cognitive processes, language comprehension relies, in part, on long-term memory. However, the electrophysiological mechanisms underpinning the initial encoding and generalisation of higher-order linguistic knowledge remain elusive, particularly from a sleep-based consolidation perspective. One candidate mechanism that may support the consolidation of higher-order language is the temporal coordination of slow oscillations (SO) and sleep spindles during non-rapid eye movement sleep (NREM). To examine this hypothesis, we analysed electroencephalographic (EEG) data recorded from 35 participants (Mage = 25.4, SD = 7.10; 16 males) during an artificial language learning task, contrasting performance between individuals who were given an 8hr nocturnal sleep period or an equivalent period of wake. We found that sleep relative to wake was associated with superior performance for rules that followed a sequence-based word order. Post-sleep sequence-based word order processing was further associated with less task-related theta desynchronisation, an electrophysiological signature of successful memory consolidation, as well as cognitive control and working memory. Frontal NREM SO-spindle coupling was also positively associated with behavioural sensitivity to sequence-based word order rules, as well as with task-related theta power. As such, theta activity during retrieval of previously learned information correlates with SO-spindle coupling, thus linking neural activity in the sleeping and waking brain. Taken together, this study presents converging behavioral and neurophysiological evidence for a role of NREM SO-spindle coupling and task-related theta activity as signatures of successful memory consolidation and retrieval in the context of higher-order language learning.Significance statement The endogenous temporal coordination of neural oscillations supports information processing during both wake and sleep states. Here we demonstrate that slow oscillation-spindle coupling during non-rapid eye movement sleep predicts the consolidation of complex grammatical rules and modulates task-related oscillatory dynamics previously implicated in sentence processing. We show that increases in theta power predict enhanced sensitivity to grammatical violations after a period of sleep and strong slow oscillation-spindle coupling modulates subsequent task-related theta activity to influence behaviour. Our findings reveal a complex interaction between both wake- and sleep-related oscillatory dynamics during the early stages of language learning beyond the single word level.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
慢振荡-纺锤体耦合可预测基于序列的语言学习
句子理解涉及语义和语法信息的快速解码,是交流的基本过程。与其他复杂的认知过程一样,语言理解也部分依赖于长期记忆。然而,支持高阶语言知识的初始编码和泛化的电生理机制仍然难以捉摸,尤其是从基于睡眠的巩固角度来看更是如此。支持高阶语言巩固的一个候选机制是非快速眼动睡眠(NREM)期间慢振荡(SO)和睡眠棘的时间协调。为了验证这一假设,我们分析了 35 名参与者(年龄 25.4 岁,平均年龄 7.10 岁,男性 16 人)在进行人工语言学习任务时记录的脑电图(EEG)数据,对比了 8 小时夜间睡眠期或同等清醒期个体的表现。我们发现,相对于清醒状态,睡眠与遵循基于序列词序的规则的优异表现有关。睡眠后基于序列的词序处理还与较少的任务相关θ非同步化(成功巩固记忆的电生理特征)以及认知控制和工作记忆有关。前额NREM SO-spindle耦合也与对基于序列的词序规则的行为敏感性以及与任务相关的θ功率呈正相关。因此,在检索以前所学信息时的θ活动与SO-纺锤体耦合相关,从而将睡眠和清醒大脑中的神经活动联系起来。综上所述,本研究提出了行为学和神经生理学的综合证据,证明在高阶语言学习中,NREM SO-spindle耦合和任务相关的θ活动是成功巩固和检索记忆的标志。在这里,我们证明了非快速眼动睡眠期间的慢振荡-纺锤体耦合可预测复杂语法规则的巩固,并可调节先前与句子处理有关的任务相关振荡动力学。我们的研究表明,θ 功率的增加预示着睡眠一段时间后对语法违规行为的敏感性会增强,而强烈的慢振荡-纺锤体耦合会调节随后与任务相关的θ 活动,从而影响行为。我们的研究结果揭示了在语言学习的早期阶段,唤醒和睡眠相关振荡动态之间复杂的相互作用,而不仅仅局限于单词水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Neuroscience
Journal of Neuroscience 医学-神经科学
CiteScore
9.30
自引率
3.80%
发文量
1164
审稿时长
12 months
期刊介绍: JNeurosci (ISSN 0270-6474) is an official journal of the Society for Neuroscience. It is published weekly by the Society, fifty weeks a year, one volume a year. JNeurosci publishes papers on a broad range of topics of general interest to those working on the nervous system. Authors now have an Open Choice option for their published articles
期刊最新文献
Saliency response in superior colliculus at the future saccade goal predicts fixation duration during free viewing of dynamic scenes. Slow oscillation-spindle coupling predicts sequence-based language learning. The Nociceptor Primary Cilium Contributes to Mechanical Nociceptive Threshold and Inflammatory and Neuropathic Pain. Decoding the Temporal Structures and Interactions of Multiple Face Dimensions Using Optically Pumped Magnetometer Magnetoencephalography (OPM-MEG). Growth Hormone Receptor in Lateral Hypothalamic Neurons Is Required for Increased Food-Seeking Behavior during Food Restriction in Male Mice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1