Mengqi Wu, Xiaoli Yang, Thomas Reitz, Evgenia Blagodatskaya, Nico Eisenhauer, Martin Schädler, Steffen Schlüter
{"title":"Microhabitat properties explain variations in soil nematode communities across climate conditions in cropland, but not in grassland","authors":"Mengqi Wu, Xiaoli Yang, Thomas Reitz, Evgenia Blagodatskaya, Nico Eisenhauer, Martin Schädler, Steffen Schlüter","doi":"10.1016/j.soilbio.2024.109657","DOIUrl":null,"url":null,"abstract":"Soil nematodes are valuable bioindicators for the ecological status of soils. Nematode community properties are known to be altered by land-use intensity, to vary with seasonal dynamics, and to be affected by climate change. These external drivers also affect a range of structural, physical, and biochemical soil properties. However, it is unclear whether shifts in nematode community properties are the result of changing resource accessibility in the soil or whether these just co-occur.Here, we linked nematode community to microhabitat properties of intact soils and biochemical properties of bulk soils from a long-term field trial on land-use intensity (cropland vs. grassland) and simulated climate change (ambient vs. future climate). Soil samples were taken in two seasons (November vs. June) to capture a wide range of climatic conditions. The objective of the study was to investigate whether the resource accessibility imposed by microhabitat properties would regulate nematode communities and whether the strength of bottom-up regulation depended on climate change, land use intensification, seasonality and their interactions.Land-use and seasonality had clearly separable effects on nematode community composition. The coupling of physical microstructure properties with nematode community properties depended on land use. In cropland, nematode abundance was strongly associated with the features of the habitable pore space, such as nematode-specific porosity, pore connectivity, and particulate organic matter. Grassland nematode communities were independent of these measurable habitat properties and featured stronger co-occurrence networks. The effect of increased temperature and shifting precipitation patterns on nematode community properties were generally smaller, varied with land use and season, and were not linked to concomitant changes in microhabitat properties.Our findings indicate that characterizing microhabitat properties might be a promising approach to help explain the notorious variability in nematode community composition. The strength of bottom-up regulation by resource accessibility could be a valuable indicator of the resilience of nematode communities to environmental stresses and perturbations.","PeriodicalId":21888,"journal":{"name":"Soil Biology & Biochemistry","volume":"255 1","pages":""},"PeriodicalIF":9.8000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Biology & Biochemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.soilbio.2024.109657","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Soil nematodes are valuable bioindicators for the ecological status of soils. Nematode community properties are known to be altered by land-use intensity, to vary with seasonal dynamics, and to be affected by climate change. These external drivers also affect a range of structural, physical, and biochemical soil properties. However, it is unclear whether shifts in nematode community properties are the result of changing resource accessibility in the soil or whether these just co-occur.Here, we linked nematode community to microhabitat properties of intact soils and biochemical properties of bulk soils from a long-term field trial on land-use intensity (cropland vs. grassland) and simulated climate change (ambient vs. future climate). Soil samples were taken in two seasons (November vs. June) to capture a wide range of climatic conditions. The objective of the study was to investigate whether the resource accessibility imposed by microhabitat properties would regulate nematode communities and whether the strength of bottom-up regulation depended on climate change, land use intensification, seasonality and their interactions.Land-use and seasonality had clearly separable effects on nematode community composition. The coupling of physical microstructure properties with nematode community properties depended on land use. In cropland, nematode abundance was strongly associated with the features of the habitable pore space, such as nematode-specific porosity, pore connectivity, and particulate organic matter. Grassland nematode communities were independent of these measurable habitat properties and featured stronger co-occurrence networks. The effect of increased temperature and shifting precipitation patterns on nematode community properties were generally smaller, varied with land use and season, and were not linked to concomitant changes in microhabitat properties.Our findings indicate that characterizing microhabitat properties might be a promising approach to help explain the notorious variability in nematode community composition. The strength of bottom-up regulation by resource accessibility could be a valuable indicator of the resilience of nematode communities to environmental stresses and perturbations.
期刊介绍:
Soil Biology & Biochemistry publishes original research articles of international significance focusing on biological processes in soil and their applications to soil and environmental quality. Major topics include the ecology and biochemical processes of soil organisms, their effects on the environment, and interactions with plants. The journal also welcomes state-of-the-art reviews and discussions on contemporary research in soil biology and biochemistry.