The complementarity hypothesis reversed: root trait similarity in species mixtures promotes soil organic carbon in agroecosystems

IF 9.8 1区 农林科学 Q1 SOIL SCIENCE Soil Biology & Biochemistry Pub Date : 2025-01-30 DOI:10.1016/j.soilbio.2025.109736
Shuang Yin, Xinli Chen, Gabin Piton, César Terrer, Zhenghu Zhou, Gerlinde B. De Deyn, Isabelle Bertrand, Daniel Rasse, Ji Chen, Jose Antonio Navarro-Cano, Diego Abalos
{"title":"The complementarity hypothesis reversed: root trait similarity in species mixtures promotes soil organic carbon in agroecosystems","authors":"Shuang Yin, Xinli Chen, Gabin Piton, César Terrer, Zhenghu Zhou, Gerlinde B. De Deyn, Isabelle Bertrand, Daniel Rasse, Ji Chen, Jose Antonio Navarro-Cano, Diego Abalos","doi":"10.1016/j.soilbio.2025.109736","DOIUrl":null,"url":null,"abstract":"Increasing species diversity in agroecosystems appears as a promising venue to restore or increase soil organic carbon (SOC). It has been hypothesized that this effect is largely driven by the greater variation of root systems in plant mixtures, which may promote complementarity. However, the magnitude of this synergistic effect and the root traits driving it are uncertain. The objective of this study is to determine which root trait composition optimizes plant mixture effects on SOC. To do so, we combined a global meta-analysis of 407 paired SOC content observations under mixed species vs. monocultures across grasslands and croplands, and root traits extracted from the GRooT database. The results show that high root mycorrhizal colonization and root tissue density for the species in the mixture have higher positive effects on SOC content. Our analysis also indicates that combining species with high similarity for these traits represents preferable trait combination to increase SOC with plant mixtures, challenging the current paradigm around plant trait complementarity effects. We observed that the positive response of SOC content to species mixtures was tightly associated with increased root biomass and soil microbial biomass carbon, indicating an important contribution of belowground and microbial residuals to SOC. Additionally, SOC enhancements by plant species mixtures were more likely to be realized in regions with high precipitation, clay-rich soils, and when legumes are present. Our meta-analysis lays out a root-trait framework to enhance SOC with plant mixtures, which can serve as a guide for species and variety selection for field experiments and on-farm applications.","PeriodicalId":21888,"journal":{"name":"Soil Biology & Biochemistry","volume":"11 1","pages":""},"PeriodicalIF":9.8000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Biology & Biochemistry","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1016/j.soilbio.2025.109736","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Increasing species diversity in agroecosystems appears as a promising venue to restore or increase soil organic carbon (SOC). It has been hypothesized that this effect is largely driven by the greater variation of root systems in plant mixtures, which may promote complementarity. However, the magnitude of this synergistic effect and the root traits driving it are uncertain. The objective of this study is to determine which root trait composition optimizes plant mixture effects on SOC. To do so, we combined a global meta-analysis of 407 paired SOC content observations under mixed species vs. monocultures across grasslands and croplands, and root traits extracted from the GRooT database. The results show that high root mycorrhizal colonization and root tissue density for the species in the mixture have higher positive effects on SOC content. Our analysis also indicates that combining species with high similarity for these traits represents preferable trait combination to increase SOC with plant mixtures, challenging the current paradigm around plant trait complementarity effects. We observed that the positive response of SOC content to species mixtures was tightly associated with increased root biomass and soil microbial biomass carbon, indicating an important contribution of belowground and microbial residuals to SOC. Additionally, SOC enhancements by plant species mixtures were more likely to be realized in regions with high precipitation, clay-rich soils, and when legumes are present. Our meta-analysis lays out a root-trait framework to enhance SOC with plant mixtures, which can serve as a guide for species and variety selection for field experiments and on-farm applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Soil Biology & Biochemistry
Soil Biology & Biochemistry 农林科学-土壤科学
CiteScore
16.90
自引率
9.30%
发文量
312
审稿时长
49 days
期刊介绍: Soil Biology & Biochemistry publishes original research articles of international significance focusing on biological processes in soil and their applications to soil and environmental quality. Major topics include the ecology and biochemical processes of soil organisms, their effects on the environment, and interactions with plants. The journal also welcomes state-of-the-art reviews and discussions on contemporary research in soil biology and biochemistry.
期刊最新文献
A global meta-analysis of soil respiration in response to elevated CO2 Reduction of iron-organic carbon associations shifts net greenhouse gas release after initial permafrost thaw Patterns and drivers of soil autotrophic nitrification and associated N2O emissions Comparison of different methods for estimating microbial biomass in biochar-amended soils The complementarity hypothesis reversed: root trait similarity in species mixtures promotes soil organic carbon in agroecosystems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1