Matteo Simone, Marianna Iorio, Paolo Monciardini, Massimo Santini, Niccolò Cantù, Arianna Tocchetti, Stefania Serina, Cristina Brunati, Thomas Vernay, Andrea Gentile, Mattia Aracne, Marco Cozzi, Justin J. J. van der Hooft, Margherita Sosio, Stefano Donadio and Sonia I. Maffioli*,
{"title":"The Molecules Gateway: A Homogeneous, Searchable Database of 150k Annotated Molecules from Actinomycetes","authors":"Matteo Simone, Marianna Iorio, Paolo Monciardini, Massimo Santini, Niccolò Cantù, Arianna Tocchetti, Stefania Serina, Cristina Brunati, Thomas Vernay, Andrea Gentile, Mattia Aracne, Marco Cozzi, Justin J. J. van der Hooft, Margherita Sosio, Stefano Donadio and Sonia I. Maffioli*, ","doi":"10.1021/acs.jnatprod.4c0085710.1021/acs.jnatprod.4c00857","DOIUrl":null,"url":null,"abstract":"<p >Natural products are a sustainable resource for drug discovery, but their identification in complex mixtures remains a daunting task. We present an automated pipeline that compares, harmonizes and ranks the annotations of LC-HRMS data by different tools. When applied to 7,400 extracts derived from 6,566 strains belonging to 86 actinomycete genera, it yielded 150,000 molecules after processing over 50 million MS features. The web-based Molecules Gateway provides a highly interactive access to experimental and calculated data for these molecules, along with the metadata related to extracts and producer strains. We show how the Molecules Gateway can be used to rapidly identify known hard to find microbial products, unreported analogs of known families and not yet described metabolites. The Molecules Gateway, which complements available repositories, contains annotated MS data, both acquired and computationally processed under an identical workflow, making it suitable for global analyses which reveal a large and untapped chemical diversity afforded by actinomycetes.</p>","PeriodicalId":47,"journal":{"name":"Journal of Natural Products ","volume":"87 11","pages":"2615–2628 2615–2628"},"PeriodicalIF":3.3000,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Natural Products ","FirstCategoryId":"99","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jnatprod.4c00857","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Natural products are a sustainable resource for drug discovery, but their identification in complex mixtures remains a daunting task. We present an automated pipeline that compares, harmonizes and ranks the annotations of LC-HRMS data by different tools. When applied to 7,400 extracts derived from 6,566 strains belonging to 86 actinomycete genera, it yielded 150,000 molecules after processing over 50 million MS features. The web-based Molecules Gateway provides a highly interactive access to experimental and calculated data for these molecules, along with the metadata related to extracts and producer strains. We show how the Molecules Gateway can be used to rapidly identify known hard to find microbial products, unreported analogs of known families and not yet described metabolites. The Molecules Gateway, which complements available repositories, contains annotated MS data, both acquired and computationally processed under an identical workflow, making it suitable for global analyses which reveal a large and untapped chemical diversity afforded by actinomycetes.
期刊介绍:
The Journal of Natural Products invites and publishes papers that make substantial and scholarly contributions to the area of natural products research. Contributions may relate to the chemistry and/or biochemistry of naturally occurring compounds or the biology of living systems from which they are obtained.
Specifically, there may be articles that describe secondary metabolites of microorganisms, including antibiotics and mycotoxins; physiologically active compounds from terrestrial and marine plants and animals; biochemical studies, including biosynthesis and microbiological transformations; fermentation and plant tissue culture; the isolation, structure elucidation, and chemical synthesis of novel compounds from nature; and the pharmacology of compounds of natural origin.
When new compounds are reported, manuscripts describing their biological activity are much preferred.
Specifically, there may be articles that describe secondary metabolites of microorganisms, including antibiotics and mycotoxins; physiologically active compounds from terrestrial and marine plants and animals; biochemical studies, including biosynthesis and microbiological transformations; fermentation and plant tissue culture; the isolation, structure elucidation, and chemical synthesis of novel compounds from nature; and the pharmacology of compounds of natural origin.