Late-stage-functionalization of anti-depressant molecule buspirone.

IF 3.9 2区 化学 Q2 CHEMISTRY, APPLIED Molecular Diversity Pub Date : 2024-11-23 DOI:10.1007/s11030-024-11029-x
Yalin Guo, Debin Yang, Bo Hu, Yongtao Duan, Yibing Cheng, Yu Tang, Caili Guo, Yuanzhe Li, Bing Yu
{"title":"Late-stage-functionalization of anti-depressant molecule buspirone.","authors":"Yalin Guo, Debin Yang, Bo Hu, Yongtao Duan, Yibing Cheng, Yu Tang, Caili Guo, Yuanzhe Li, Bing Yu","doi":"10.1007/s11030-024-11029-x","DOIUrl":null,"url":null,"abstract":"<p><p>Buspirone, a well-established anxiolytic agent, has gained attention for its potential role as an antidepressant, primarily due to its unique pharmacological profile and the ability to modulate serotonin receptors effectively. Late-stage functionalization is considered as a pivotal strategy in drug synthesis that enhances the therapeutic efficacy of existing molecules. This review summarizes various late-stage functionalization techniques applicable to Buspirone, including photocatalyzed, metal-catalyzed, and enzyme-catalyzed reactions.</p>","PeriodicalId":708,"journal":{"name":"Molecular Diversity","volume":" ","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Diversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11030-024-11029-x","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Buspirone, a well-established anxiolytic agent, has gained attention for its potential role as an antidepressant, primarily due to its unique pharmacological profile and the ability to modulate serotonin receptors effectively. Late-stage functionalization is considered as a pivotal strategy in drug synthesis that enhances the therapeutic efficacy of existing molecules. This review summarizes various late-stage functionalization techniques applicable to Buspirone, including photocatalyzed, metal-catalyzed, and enzyme-catalyzed reactions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
抗抑郁分子丁螺环酮的后期功能化。
丁螺环酮(Buspirone)是一种成熟的抗焦虑药,由于其独特的药理特征和有效调节 5-羟色胺受体的能力,它作为抗抑郁药的潜在作用受到了关注。后期功能化被认为是药物合成中的一种关键策略,可提高现有分子的疗效。本综述总结了适用于丁螺环酮的各种后期功能化技术,包括光催化、金属催化和酶催化反应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Molecular Diversity
Molecular Diversity 化学-化学综合
CiteScore
7.30
自引率
7.90%
发文量
219
审稿时长
2.7 months
期刊介绍: Molecular Diversity is a new publication forum for the rapid publication of refereed papers dedicated to describing the development, application and theory of molecular diversity and combinatorial chemistry in basic and applied research and drug discovery. The journal publishes both short and full papers, perspectives, news and reviews dealing with all aspects of the generation of molecular diversity, application of diversity for screening against alternative targets of all types (biological, biophysical, technological), analysis of results obtained and their application in various scientific disciplines/approaches including: combinatorial chemistry and parallel synthesis; small molecule libraries; microwave synthesis; flow synthesis; fluorous synthesis; diversity oriented synthesis (DOS); nanoreactors; click chemistry; multiplex technologies; fragment- and ligand-based design; structure/function/SAR; computational chemistry and molecular design; chemoinformatics; screening techniques and screening interfaces; analytical and purification methods; robotics, automation and miniaturization; targeted libraries; display libraries; peptides and peptoids; proteins; oligonucleotides; carbohydrates; natural diversity; new methods of library formulation and deconvolution; directed evolution, origin of life and recombination; search techniques, landscapes, random chemistry and more;
期刊最新文献
Design, synthesis, and biological evaluation of novel molecules as potent inhibitors of indoleamine 2,3-dioxygenase 1. Late-stage-functionalization of anti-depressant molecule buspirone. Identification and interaction mechanism of novel small molecule antagonists targeting CC chemokine receptor 1/3/5 for treatment of non-small cell lung cancer. Integrated computational approaches for identification of potent pyrazole-based glycogen synthase kinase-3β (GSK-3β) inhibitors: 3D-QSAR, virtual screening, docking, MM/GBSA, EC, MD simulation studies. Transcriptome and interactome-based analyses to unravel crucial proteins and pathways involved in Acinetobacter baumannii pathogenesis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1