Large-scale survival analysis with a cure fraction.

IF 1.4 4区 数学 Q3 BIOLOGY Biometrics Pub Date : 2024-10-03 DOI:10.1093/biomtc/ujae138
Bo Han, Xiaoguang Wang, Liuquan Sun
{"title":"Large-scale survival analysis with a cure fraction.","authors":"Bo Han, Xiaoguang Wang, Liuquan Sun","doi":"10.1093/biomtc/ujae138","DOIUrl":null,"url":null,"abstract":"<p><p>With the advent of massive survival data with a cure fraction, large-scale regression for analyzing the effects of risk factors on a general population has become an emerging challenge. This article proposes a new probability-weighted method for estimation and inference for semiparametric cure regression models. We develop a flexible formulation of the mixture cure model consisting of the model-free incidence and the latency assumed by the semiparametric proportional hazards model. The susceptible probability assesses the concordance between the observations and the latency. With the susceptible probability as weight, we propose a weighted estimating equation method in a small-scale setting. Robust nonparametric estimation of the weight permits stable implementation of the estimation of regression parameters. A recursive probability-weighted estimation method based on data blocks with smaller sizes is further proposed, which achieves computational and memory efficiency in a large-scale or online setting. Asymptotic properties of the proposed estimators are established. We conduct simulation studies and a real data application to demonstrate the empirical performance of the proposed method.</p>","PeriodicalId":8930,"journal":{"name":"Biometrics","volume":"80 4","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biomtc/ujae138","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

With the advent of massive survival data with a cure fraction, large-scale regression for analyzing the effects of risk factors on a general population has become an emerging challenge. This article proposes a new probability-weighted method for estimation and inference for semiparametric cure regression models. We develop a flexible formulation of the mixture cure model consisting of the model-free incidence and the latency assumed by the semiparametric proportional hazards model. The susceptible probability assesses the concordance between the observations and the latency. With the susceptible probability as weight, we propose a weighted estimating equation method in a small-scale setting. Robust nonparametric estimation of the weight permits stable implementation of the estimation of regression parameters. A recursive probability-weighted estimation method based on data blocks with smaller sizes is further proposed, which achieves computational and memory efficiency in a large-scale or online setting. Asymptotic properties of the proposed estimators are established. We conduct simulation studies and a real data application to demonstrate the empirical performance of the proposed method.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用治愈率进行大规模生存分析
随着具有治愈率的海量生存数据的出现,用于分析风险因素对一般人群影响的大规模回归已成为一项新的挑战。本文提出了一种新的概率加权方法,用于半参数治愈回归模型的估计和推断。我们开发了一种灵活的混合治愈模型,该模型由半参数比例危害模型假设的无模型发病率和潜伏期组成。易感概率评估观察结果与潜伏期之间的一致性。以易感概率为权重,我们提出了一种小规模加权估计方程方法。通过对权重进行稳健的非参数估计,可以稳定地实现回归参数的估计。我们进一步提出了一种基于较小规模数据块的递归概率加权估计方法,在大规模或在线环境中实现了计算和内存效率。我们建立了所提估计器的渐近特性。我们进行了模拟研究和实际数据应用,以证明所提方法的经验性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biometrics
Biometrics 生物-生物学
CiteScore
2.70
自引率
5.30%
发文量
178
审稿时长
4-8 weeks
期刊介绍: The International Biometric Society is an international society promoting the development and application of statistical and mathematical theory and methods in the biosciences, including agriculture, biomedical science and public health, ecology, environmental sciences, forestry, and allied disciplines. The Society welcomes as members statisticians, mathematicians, biological scientists, and others devoted to interdisciplinary efforts in advancing the collection and interpretation of information in the biosciences. The Society sponsors the biennial International Biometric Conference, held in sites throughout the world; through its National Groups and Regions, it also Society sponsors regional and local meetings.
期刊最新文献
Composite dyadic models for spatio-temporal data. ROMI: a randomized two-stage basket trial design to optimize doses for multiple indications. Bayesian network-guided sparse regression with flexible varying effects. Group sequential testing of a treatment effect using a surrogate marker. On network deconvolution for undirected graphs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1