Jaewoo Kim, Dasom Heo, Seonghee Cho, Mingyu Ha, Jeongwoo Park, Joongho Ahn, Minsu Kim, Donggyu Kim, Da Hyun Jung, Hyung Ham Kim, Hee Man Kim, Chulhong Kim
{"title":"Enhanced dual-mode imaging: Superior photoacoustic and ultrasound endoscopy in live pigs using a transparent ultrasound transducer","authors":"Jaewoo Kim, Dasom Heo, Seonghee Cho, Mingyu Ha, Jeongwoo Park, Joongho Ahn, Minsu Kim, Donggyu Kim, Da Hyun Jung, Hyung Ham Kim, Hee Man Kim, Chulhong Kim","doi":"10.1126/sciadv.adq9960","DOIUrl":null,"url":null,"abstract":"<div >Dual-mode photoacoustic/ultrasound endoscopy (ePAUS) is a promising tool for preclinical and clinical interventions. To be clinically useful, ePAUS must deliver high-performance ultrasound imaging comparable to commercial systems and maintain high photoacoustic imaging performance at long working distances. This requires a transducer with an intact physical aperture and coaxial alignment of acoustic and optical beams within the probe, a challenging integration task. We present a high-performance ePAUS probe with a miniaturized, optically transparent ultrasonic transducer (TUT) called ePAUS-TUT. The 1.8-mm-diameter probe, fitting into standard endoscopic channels, aligns acoustic and optical beams efficiently, achieving commercial-level ultrasound and high-resolution photoacoustic imaging over long distances. These imaging capabilities were validated through in vivo imaging of a rat’s rectum and a pig’s esophagus. The ePAUS-TUT system substantially enhances feasibility and potential for clinical applications.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"10 47","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11584001/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adq9960","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Dual-mode photoacoustic/ultrasound endoscopy (ePAUS) is a promising tool for preclinical and clinical interventions. To be clinically useful, ePAUS must deliver high-performance ultrasound imaging comparable to commercial systems and maintain high photoacoustic imaging performance at long working distances. This requires a transducer with an intact physical aperture and coaxial alignment of acoustic and optical beams within the probe, a challenging integration task. We present a high-performance ePAUS probe with a miniaturized, optically transparent ultrasonic transducer (TUT) called ePAUS-TUT. The 1.8-mm-diameter probe, fitting into standard endoscopic channels, aligns acoustic and optical beams efficiently, achieving commercial-level ultrasound and high-resolution photoacoustic imaging over long distances. These imaging capabilities were validated through in vivo imaging of a rat’s rectum and a pig’s esophagus. The ePAUS-TUT system substantially enhances feasibility and potential for clinical applications.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.