Jinyu Sheng, Carlijn L F van Beek, Charlotte N Stindt, Wojciech Danowski, Joanna Jankowska, Stefano Crespi, Daisy R S Pooler, Michiel F Hilbers, Wybren Jan Buma, Ben L Feringa
{"title":"General strategy for boosting the performance of speed-tunable rotary molecular motors with visible light.","authors":"Jinyu Sheng, Carlijn L F van Beek, Charlotte N Stindt, Wojciech Danowski, Joanna Jankowska, Stefano Crespi, Daisy R S Pooler, Michiel F Hilbers, Wybren Jan Buma, Ben L Feringa","doi":"10.1126/sciadv.adr9326","DOIUrl":null,"url":null,"abstract":"<p><p>Light-driven molecular rotary motors perform chirality-controlled unidirectional rotations fueled by light and heat. This unique function renders them appealing for the construction of dynamic molecular systems, actuating materials, and molecular machines. Achieving a combination of high photoefficiency, visible-light responsiveness, synthetic accessibility, and easy tuning of dynamic properties within a single scaffold is critical for these applications but remains a longstanding challenge. Herein, a series of highly photoefficient visible-light-responsive molecular motors (MMs), featuring various rotary speeds, was obtained by a convenient one-step formylation of their parent motors. This strategy greatly improves all aspects of the performance of MMs-red-shifted wavelengths of excitation, high photoisomerization quantum yields, and high photostationary state distributions of isomers-beyond the state-of-the-art light-responsive MM systems. The development of this late-stage functionalization strategy of MMs opens avenues for the construction of high-performance molecular machines and devices for applications in materials science and biological systems, representing a major advance in the synthetic toolbox of molecular machines.</p>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 8","pages":"eadr9326"},"PeriodicalIF":11.7000,"publicationDate":"2025-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1126/sciadv.adr9326","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/19 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Light-driven molecular rotary motors perform chirality-controlled unidirectional rotations fueled by light and heat. This unique function renders them appealing for the construction of dynamic molecular systems, actuating materials, and molecular machines. Achieving a combination of high photoefficiency, visible-light responsiveness, synthetic accessibility, and easy tuning of dynamic properties within a single scaffold is critical for these applications but remains a longstanding challenge. Herein, a series of highly photoefficient visible-light-responsive molecular motors (MMs), featuring various rotary speeds, was obtained by a convenient one-step formylation of their parent motors. This strategy greatly improves all aspects of the performance of MMs-red-shifted wavelengths of excitation, high photoisomerization quantum yields, and high photostationary state distributions of isomers-beyond the state-of-the-art light-responsive MM systems. The development of this late-stage functionalization strategy of MMs opens avenues for the construction of high-performance molecular machines and devices for applications in materials science and biological systems, representing a major advance in the synthetic toolbox of molecular machines.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.