Interphase‐Regulated Room‐Temperature Sodium‐Sulfur Batteries Enabled by a Nonflammable Dual‐Functional Electrolyte

IF 24.4 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Advanced Energy Materials Pub Date : 2024-11-23 DOI:10.1002/aenm.202404890
Yang Liu, Suwan Lu, Shixiao Weng, Jingjing Xu, Haifeng Tu, Zhicheng Wang, Jiangyan Xue, Lingwang Liu, Fengrui Zhang, Guochao Sun, Yiwen Gao, Can Qian, Zheng Liu, Hong Li, Xiaodong Wu
{"title":"Interphase‐Regulated Room‐Temperature Sodium‐Sulfur Batteries Enabled by a Nonflammable Dual‐Functional Electrolyte","authors":"Yang Liu, Suwan Lu, Shixiao Weng, Jingjing Xu, Haifeng Tu, Zhicheng Wang, Jiangyan Xue, Lingwang Liu, Fengrui Zhang, Guochao Sun, Yiwen Gao, Can Qian, Zheng Liu, Hong Li, Xiaodong Wu","doi":"10.1002/aenm.202404890","DOIUrl":null,"url":null,"abstract":"Room temperature sodium‐sulfur (RT Na‐S) batteries have attracted significant attention due to their abundant material reserves, low cost, and high theoretical specific capacity. However, the inherent problems of electrodes and complex interfacial reactions hinder the practical applications. In this study, a nonflammable dual‐functional ionic liquid‐based electrolyte is developed, which can form an inorganic‐rich solid electrolyte interphase on the surface of sodium‐metal anode, effectively improving the sodium deposition behavior and inhibiting dendrite growth. Meanwhile, the unique synergistic effect of FSI<jats:sup>−</jats:sup>/TFSI<jats:sup>−</jats:sup> and fluoroethylene carbonate (FEC) in nucleophilic substitution with sodium polysulfides are harnessed to modulate a solid‐solid (S<jats:sub>8</jats:sub>‐Na<jats:sub>2</jats:sub>S) transition, resulting in the formation of a stable cathode electrolyte interphase (CEI) enhanced with NaF spheres. Consequently, the generation of polysulfides and interfacial side reactions are effectively suppressed by the solid‐solid transition mechanism under CEI protection. Therefore, by optimizing the multi‐component electrolyte, the S@C||Na cell exhibits high capacity, extends lifespan, exceptional rate performance, and enhances safety, showing a specific capacity of 565 mAh g<jats:sup>−1</jats:sup> after 500 cycles at 0.2 A g<jats:sup>−1</jats:sup>. The utilization of this novel electrolyte holds great potential in RT Na‐S batteries, enabling enhanced electrochemical performance and safety.","PeriodicalId":111,"journal":{"name":"Advanced Energy Materials","volume":"78 1","pages":""},"PeriodicalIF":24.4000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Energy Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/aenm.202404890","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Room temperature sodium‐sulfur (RT Na‐S) batteries have attracted significant attention due to their abundant material reserves, low cost, and high theoretical specific capacity. However, the inherent problems of electrodes and complex interfacial reactions hinder the practical applications. In this study, a nonflammable dual‐functional ionic liquid‐based electrolyte is developed, which can form an inorganic‐rich solid electrolyte interphase on the surface of sodium‐metal anode, effectively improving the sodium deposition behavior and inhibiting dendrite growth. Meanwhile, the unique synergistic effect of FSI/TFSI and fluoroethylene carbonate (FEC) in nucleophilic substitution with sodium polysulfides are harnessed to modulate a solid‐solid (S8‐Na2S) transition, resulting in the formation of a stable cathode electrolyte interphase (CEI) enhanced with NaF spheres. Consequently, the generation of polysulfides and interfacial side reactions are effectively suppressed by the solid‐solid transition mechanism under CEI protection. Therefore, by optimizing the multi‐component electrolyte, the S@C||Na cell exhibits high capacity, extends lifespan, exceptional rate performance, and enhances safety, showing a specific capacity of 565 mAh g−1 after 500 cycles at 0.2 A g−1. The utilization of this novel electrolyte holds great potential in RT Na‐S batteries, enabling enhanced electrochemical performance and safety.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用不易燃双功能电解质的相间调节型室温钠硫电池
室温钠硫(RT Na-S)电池因其丰富的材料储备、低成本和高理论比容量而备受关注。然而,电极的固有问题和复杂的界面反应阻碍了其实际应用。本研究开发了一种不易燃的双功能离子液体型电解质,它能在钠金属阳极表面形成富含无机物的固体电解质相,有效改善钠沉积行为并抑制枝晶生长。同时,利用 FSI-/TFSI- 和氟碳酸乙烯(FEC)与多硫化钠亲核取代的独特协同效应,调节固-固(S8-Na2S)转变,从而形成稳定的阴极电解质间相(CEI),增强 NaF 球。因此,在 CEI 保护下,固-固转变机制可有效抑制多硫化物的生成和界面副反应。因此,通过优化多组分电解质,S@C||Na 电池表现出高容量、长寿命、优异的速率性能和更高的安全性,在 0.2 A g-1 条件下循环 500 次后,比容量达到 565 mAh g-1。在 RT Na-S 电池中使用这种新型电解质具有很大的潜力,可提高电化学性能和安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Energy Materials
Advanced Energy Materials CHEMISTRY, PHYSICAL-ENERGY & FUELS
CiteScore
41.90
自引率
4.00%
发文量
889
审稿时长
1.4 months
期刊介绍: Established in 2011, Advanced Energy Materials is an international, interdisciplinary, English-language journal that focuses on materials used in energy harvesting, conversion, and storage. It is regarded as a top-quality journal alongside Advanced Materials, Advanced Functional Materials, and Small. With a 2022 Impact Factor of 27.8, Advanced Energy Materials is considered a prime source for the best energy-related research. The journal covers a wide range of topics in energy-related research, including organic and inorganic photovoltaics, batteries and supercapacitors, fuel cells, hydrogen generation and storage, thermoelectrics, water splitting and photocatalysis, solar fuels and thermosolar power, magnetocalorics, and piezoelectronics. The readership of Advanced Energy Materials includes materials scientists, chemists, physicists, and engineers in both academia and industry. The journal is indexed in various databases and collections, such as Advanced Technologies & Aerospace Database, FIZ Karlsruhe, INSPEC (IET), Science Citation Index Expanded, Technology Collection, and Web of Science, among others.
期刊最新文献
Editorial for the Special Issue: Research at the SKKU Institute of Energy Science and Technology (SIEST), Sungkyunkwan University Lithium Dendrite Deflection at Mixed Ionic–Electronic Conducting Interlayers in Solid Electrolytes Tape‐Casting Lead‐Free Dielectrics Permit Superior Capacitive Energy Storage Performance A Self‐Recovery Triboelectric Nanogenerator with High Breakdown Resistance for Water Wave Energy Harvesting Interphase‐Regulated Room‐Temperature Sodium‐Sulfur Batteries Enabled by a Nonflammable Dual‐Functional Electrolyte
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1