An in-situ high-throughput study of the Invar effect in the Fe–Ni–Co system

IF 5.8 2区 材料科学 Q2 CHEMISTRY, PHYSICAL Journal of Alloys and Compounds Pub Date : 2024-11-24 DOI:10.1016/j.jallcom.2024.177755
Jianhao Wang, Cai Chen, Yuanxun Zhou, Zheyu Wu, Xingyu Gao, Bingbing Zhao, Lanting Zhang, Hong Wang
{"title":"An in-situ high-throughput study of the Invar effect in the Fe–Ni–Co system","authors":"Jianhao Wang, Cai Chen, Yuanxun Zhou, Zheyu Wu, Xingyu Gao, Bingbing Zhao, Lanting Zhang, Hong Wang","doi":"10.1016/j.jallcom.2024.177755","DOIUrl":null,"url":null,"abstract":"The Fe–Ni based classical Invar alloy and the Fe–Ni–Co based super Invar alloy are the basis for designing multicomponent alloys with low thermal expansion. In this work, we applied in-situ high-throughput experimental methods to map chemical composition, crystal structure, coefficient of thermal expansion (CTE) and magnetism in the Fe–Ni–Co system. The distribution of CTE (80~200℃) measured by the in-situ micro-beam X-ray diffraction on the combinatorial materials chips (CMC) showed low CTE regions in agreement with previous reports. Combined with the MOKE measurements, the <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mover accent=\"true\" is=\"true\"&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;&amp;#x3BC;&lt;/mi&gt;&lt;/mrow&gt;&lt;mo is=\"true\"&gt;&amp;#x305;&lt;/mo&gt;&lt;/mover&gt;&lt;mo linebreak=\"badbreak\" linebreakstyle=\"after\" is=\"true\"&gt;&amp;#x2212;&lt;/mo&gt;&lt;mover accent=\"true\" is=\"true\"&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;e&lt;/mi&gt;&lt;/mrow&gt;&lt;mo is=\"true\"&gt;&amp;#x305;&lt;/mo&gt;&lt;/mover&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.202ex\" role=\"img\" style=\"vertical-align: -0.697ex;\" viewbox=\"0 -647.8 2336.1 947.9\" width=\"5.426ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-3BC\"></use></g></g><g is=\"true\" transform=\"translate(108,-35)\"><text font-family=\"STIXGeneral,'Arial Unicode MS',serif\" stroke=\"none\" transform=\"scale(55.199) matrix(1 0 0 -1 0 0)\">̅</text></g></g><g is=\"true\" transform=\"translate(825,0)\"><use xlink:href=\"#MJMAIN-2212\"></use></g><g is=\"true\" transform=\"translate(1826,0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-65\"></use></g></g><g is=\"true\" transform=\"translate(68,-34)\"><text font-family=\"STIXGeneral,'Arial Unicode MS',serif\" stroke=\"none\" transform=\"scale(55.199) matrix(1 0 0 -1 0 0)\">̅</text></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mover accent=\"true\" is=\"true\"><mrow is=\"true\"><mi is=\"true\">μ</mi></mrow><mo is=\"true\">̅</mo></mover><mo is=\"true\" linebreak=\"badbreak\" linebreakstyle=\"after\">−</mo><mover accent=\"true\" is=\"true\"><mrow is=\"true\"><mi is=\"true\">e</mi></mrow><mo is=\"true\">̅</mo></mover></math></span></span><script type=\"math/mml\"><math><mover accent=\"true\" is=\"true\"><mrow is=\"true\"><mi is=\"true\">μ</mi></mrow><mo is=\"true\">̅</mo></mover><mo linebreak=\"badbreak\" linebreakstyle=\"after\" is=\"true\">−</mo><mover accent=\"true\" is=\"true\"><mrow is=\"true\"><mi is=\"true\">e</mi></mrow><mo is=\"true\">̅</mo></mover></math></script></span> relation of the Fe–Ni–Co ternary FCC phase is found to follow the reported FCC Fe–Ni alloys in the Slater-Pauling curve. A low CTE region is centred at <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mover accent=\"true\" is=\"true\"&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;e&lt;/mi&gt;&lt;/mrow&gt;&lt;mo is=\"true\"&gt;&amp;#x305;&lt;/mo&gt;&lt;/mover&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.74ex\" role=\"img\" style=\"vertical-align: -0.028ex; margin-bottom: -0.208ex;\" viewbox=\"0 -647.8 509.6 749.2\" width=\"1.184ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-65\"></use></g></g><g is=\"true\" transform=\"translate(68,-34)\"><text font-family=\"STIXGeneral,'Arial Unicode MS',serif\" stroke=\"none\" transform=\"scale(55.199) matrix(1 0 0 -1 0 0)\">̅</text></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mover accent=\"true\" is=\"true\"><mrow is=\"true\"><mi is=\"true\">e</mi></mrow><mo is=\"true\">̅</mo></mover></math></span></span><script type=\"math/mml\"><math><mover accent=\"true\" is=\"true\"><mrow is=\"true\"><mi is=\"true\">e</mi></mrow><mo is=\"true\">̅</mo></mover></math></script></span> = 26.7 and <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;mover accent=\"true\" is=\"true\"&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;&amp;#x3BC;&lt;/mi&gt;&lt;/mrow&gt;&lt;mo is=\"true\"&gt;&amp;#x305;&lt;/mo&gt;&lt;/mover&gt;&lt;mspace width=\"1em\" is=\"true\" /&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.202ex\" role=\"img\" style=\"vertical-align: -0.697ex;\" viewbox=\"0 -647.8 1603.5 947.9\" width=\"3.724ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-3BC\"></use></g></g><g is=\"true\" transform=\"translate(108,-35)\"><text font-family=\"STIXGeneral,'Arial Unicode MS',serif\" stroke=\"none\" transform=\"scale(55.199) matrix(1 0 0 -1 0 0)\">̅</text></g></g><g is=\"true\"></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mover accent=\"true\" is=\"true\"><mrow is=\"true\"><mi is=\"true\">μ</mi></mrow><mo is=\"true\">̅</mo></mover><mspace is=\"true\" width=\"1em\"></mspace></math></span></span><script type=\"math/mml\"><math><mover accent=\"true\" is=\"true\"><mrow is=\"true\"><mi is=\"true\">μ</mi></mrow><mo is=\"true\">̅</mo></mover><mspace width=\"1em\" is=\"true\"></mspace></math></script></span>= 1.26 <span><span style=\"\"></span><span data-mathml='&lt;math xmlns=\"http://www.w3.org/1998/Math/MathML\"&gt;&lt;msub is=\"true\"&gt;&lt;mrow is=\"true\"&gt;&lt;mi mathvariant=\"italic\" is=\"true\"&gt;&amp;#x3BC;&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow is=\"true\"&gt;&lt;mi is=\"true\"&gt;B&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"1.971ex\" role=\"img\" style=\"vertical-align: -0.812ex;\" viewbox=\"0 -498.8 1240.5 848.5\" width=\"2.881ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-3BC\"></use></g></g><g is=\"true\" transform=\"translate(603,-253)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMATHI-42\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msub is=\"true\"><mrow is=\"true\"><mi is=\"true\" mathvariant=\"italic\">μ</mi></mrow><mrow is=\"true\"><mi is=\"true\">B</mi></mrow></msub></math></span></span><script type=\"math/mml\"><math><msub is=\"true\"><mrow is=\"true\"><mi mathvariant=\"italic\" is=\"true\">μ</mi></mrow><mrow is=\"true\"><mi is=\"true\">B</mi></mrow></msub></math></script></span> in the Slater-Pauling curve. The observed low CTE zone not only matches with the classical Invar and super Invar alloys but also agrees with the reported Fe–Ni–Co based multicomponent alloys with a small amount of doping (&lt; 5<!-- --> <!-- -->at.%) by Cu, Cr, Mn etc. The effect of Cr addition (&gt; 5<!-- --> <!-- -->at.%) to Fe–Ni–Co alloys on the Invar effect is further discussed in terms of the interplay between magnetism and austinite stability.","PeriodicalId":344,"journal":{"name":"Journal of Alloys and Compounds","volume":"15 1","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Compounds","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jallcom.2024.177755","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The Fe–Ni based classical Invar alloy and the Fe–Ni–Co based super Invar alloy are the basis for designing multicomponent alloys with low thermal expansion. In this work, we applied in-situ high-throughput experimental methods to map chemical composition, crystal structure, coefficient of thermal expansion (CTE) and magnetism in the Fe–Ni–Co system. The distribution of CTE (80~200℃) measured by the in-situ micro-beam X-ray diffraction on the combinatorial materials chips (CMC) showed low CTE regions in agreement with previous reports. Combined with the MOKE measurements, the μ̅e̅ relation of the Fe–Ni–Co ternary FCC phase is found to follow the reported FCC Fe–Ni alloys in the Slater-Pauling curve. A low CTE region is centred at e̅ = 26.7 and μ̅= 1.26 μB in the Slater-Pauling curve. The observed low CTE zone not only matches with the classical Invar and super Invar alloys but also agrees with the reported Fe–Ni–Co based multicomponent alloys with a small amount of doping (< 5 at.%) by Cu, Cr, Mn etc. The effect of Cr addition (> 5 at.%) to Fe–Ni–Co alloys on the Invar effect is further discussed in terms of the interplay between magnetism and austinite stability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铁-镍-钴体系因瓦效应的原位高通量研究
以铁-镍为基础的经典因瓦合金和以铁-镍-钴为基础的超级因瓦合金是设计低热膨胀多组分合金的基础。在这项工作中,我们采用原位高通量实验方法绘制了铁-镍-钴体系的化学成分、晶体结构、热膨胀系数(CTE)和磁性分布图。在组合材料芯片(CMC)上用原位微束 X 射线衍射测量的 CTE 分布(80~200℃)显示出低 CTE 区域,这与之前的报道一致。结合 MOKE 测量结果,发现铁-镍-钴三元 FCC 相的̅̅μ̅-e̅μ̅-e̅关系与已报道的 FCC 铁-镍合金的 Slater-Pauling 曲线一致。在 Slater-Pauling 曲线中,以 ̅e̅e̅ = 26.7 和 ̅μ̅μ̅ = 1.26 μBμB 为中心存在一个低 CTE 区域。所观察到的低 CTE 区不仅与经典的因瓦合金和超级因瓦合金相吻合,而且与所报道的少量掺杂(< 5 at.%)铜、铬、锰等元素的铁-镍-钴基多成分合金相吻合。在铁-镍-钴合金中添加铬(5%)对因钢效应的影响将从磁性和奥氏体稳定性之间的相互作用角度进一步讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Alloys and Compounds
Journal of Alloys and Compounds 工程技术-材料科学:综合
CiteScore
11.10
自引率
14.50%
发文量
5146
审稿时长
67 days
期刊介绍: The Journal of Alloys and Compounds is intended to serve as an international medium for the publication of work on solid materials comprising compounds as well as alloys. Its great strength lies in the diversity of discipline which it encompasses, drawing together results from materials science, solid-state chemistry and physics.
期刊最新文献
Cobalt-Nickel Sulfide Hierarchical Hollow Microspheres to Boost Electrochemical Activity for Supercapacitors A novel Bi3+,Eu3+ co-doped Ca3Zr2SiGa2O12 phosphors for high-sensitive temperature measurement Stress corrosion behavior and microstructure analysis of Al-Zn-Mg-Cu alloys fabricated by CMT wire arc additive manufacturing with different post-treatments Construction of g-C3N4/Ti3C2/α-Fe2O3 ternary composite: Synergistic enhancement of photocatalytic performance by Schottky junction/Z-scheme heterojunction-structure and wide light absorption range An in-situ high-throughput study of the Invar effect in the Fe–Ni–Co system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1