{"title":"Bioinspired Ion Host with Buried and Consecutive Binding Sites for Controlled Ion Dislocation","authors":"Wenjie Zhu, Zhenchuang Xu, Wei Zhang, Qi Jia, Haoliang Hao, Yucheng Gu and Yanchuan Zhao*, ","doi":"10.1021/jacsau.4c0075210.1021/jacsau.4c00752","DOIUrl":null,"url":null,"abstract":"<p >This study presents a bioinspired ion host featuring continuous binding sites arranged in a tunnel-like structure, closely resembling the selectivity filter of natural ion channels. Our investigation reveals that ions traverse these sites in a controlled, sequential manner due to the structural constraints, effectively mimicking the ion translocation process observed in natural channels. Unlike systems with open binding sites, our model facilitates sequential ion recognition state transitions, enabled by the deliberate design of the tunnel. Notably, we observe dual ion release kinetics, highlighting the system’s capacity to maintain ion balance in complex environments and adapt to changing conditions. Additionally, we demonstrate selective binding of two different ions─a challenging task for systems lacking structured tunnels.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":"4 11","pages":"4415–4422 4415–4422"},"PeriodicalIF":8.5000,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacsau.4c00752","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacsau.4c00752","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents a bioinspired ion host featuring continuous binding sites arranged in a tunnel-like structure, closely resembling the selectivity filter of natural ion channels. Our investigation reveals that ions traverse these sites in a controlled, sequential manner due to the structural constraints, effectively mimicking the ion translocation process observed in natural channels. Unlike systems with open binding sites, our model facilitates sequential ion recognition state transitions, enabled by the deliberate design of the tunnel. Notably, we observe dual ion release kinetics, highlighting the system’s capacity to maintain ion balance in complex environments and adapt to changing conditions. Additionally, we demonstrate selective binding of two different ions─a challenging task for systems lacking structured tunnels.