Andrzej Gładysiak*, Ah-Young Song, Rebecca Vismara, Madison Waite, Nawal M. Alghoraibi, Ammar H. Alahmed, Mourad Younes, Hongliang Huang, Jeffrey A. Reimer and Kyriakos C. Stylianou*,
{"title":"Enhanced Carbon Dioxide Capture from Diluted Streams with Functionalized Metal–Organic Frameworks","authors":"Andrzej Gładysiak*, Ah-Young Song, Rebecca Vismara, Madison Waite, Nawal M. Alghoraibi, Ammar H. Alahmed, Mourad Younes, Hongliang Huang, Jeffrey A. Reimer and Kyriakos C. Stylianou*, ","doi":"10.1021/jacsau.4c0092310.1021/jacsau.4c00923","DOIUrl":null,"url":null,"abstract":"<p >Capturing carbon dioxide from diluted streams, such as flue gas originating from natural gas combustion, can be achieved using recyclable, humidity-resistant porous materials. Three such materials were synthesized by chemically modifying the pores of metal–organic frameworks (MOFs) with Lewis basic functional groups. These materials included aluminum 1,2,4,5-tetrakis(4-carboxylatophenyl) benzene (Al-TCPB) and two novel MOFs: Al-TCPB(OH), and Al-TCPB(NH<sub>2</sub>), both isostructural to Al-TCPB, and chemically and thermally stable. Single-component adsorption isotherms revealed significantly increased CO<sub>2</sub> uptakes upon pore functionalization. Breakthrough experiments using a 4/96 CO<sub>2</sub>/N<sub>2</sub> gas mixture humidified up to 75% RH at 25 °C showed that Al-TCPB(OH) displayed the highest CO<sub>2</sub> dynamic breakthrough capacity (0.52 mmol/g) followed by that of Al-TCPB(NH<sub>2</sub>) (0.47 mmol/g) and Al-TCPB (0.26 mmol/g). All three materials demonstrated excellent recyclability over eight humid breakthrough-regeneration cycles. Solid-state nuclear magnetic resonance spectra revealed that upon CO<sub>2</sub>/H<sub>2</sub>O loading, H<sub>2</sub>O molecules do not interfere with CO<sub>2</sub> physisorption and are localized near the Al-O(H) chain and the –NH<sub>2</sub> functional group, whereas CO<sub>2</sub> molecules are spatially confined in Al-TCPB(OH) and relatively mobile in Al-TCPB(NH<sub>2</sub>). Density functional theory calculations confirmed the impact of the adsorbaphore site between of two parallel ligand-forming benzene rings for CO<sub>2</sub> capture. Our study elucidates how pore functionalization influences the fundamental adsorption properties of MOFs, underscoring their practical potential as porous sorbent materials.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":"4 11","pages":"4527–4536 4527–4536"},"PeriodicalIF":8.5000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacsau.4c00923","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacsau.4c00923","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Capturing carbon dioxide from diluted streams, such as flue gas originating from natural gas combustion, can be achieved using recyclable, humidity-resistant porous materials. Three such materials were synthesized by chemically modifying the pores of metal–organic frameworks (MOFs) with Lewis basic functional groups. These materials included aluminum 1,2,4,5-tetrakis(4-carboxylatophenyl) benzene (Al-TCPB) and two novel MOFs: Al-TCPB(OH), and Al-TCPB(NH2), both isostructural to Al-TCPB, and chemically and thermally stable. Single-component adsorption isotherms revealed significantly increased CO2 uptakes upon pore functionalization. Breakthrough experiments using a 4/96 CO2/N2 gas mixture humidified up to 75% RH at 25 °C showed that Al-TCPB(OH) displayed the highest CO2 dynamic breakthrough capacity (0.52 mmol/g) followed by that of Al-TCPB(NH2) (0.47 mmol/g) and Al-TCPB (0.26 mmol/g). All three materials demonstrated excellent recyclability over eight humid breakthrough-regeneration cycles. Solid-state nuclear magnetic resonance spectra revealed that upon CO2/H2O loading, H2O molecules do not interfere with CO2 physisorption and are localized near the Al-O(H) chain and the –NH2 functional group, whereas CO2 molecules are spatially confined in Al-TCPB(OH) and relatively mobile in Al-TCPB(NH2). Density functional theory calculations confirmed the impact of the adsorbaphore site between of two parallel ligand-forming benzene rings for CO2 capture. Our study elucidates how pore functionalization influences the fundamental adsorption properties of MOFs, underscoring their practical potential as porous sorbent materials.