Opposed Aromatic Surfaces Behave as Independent Binding Sites for Carbohydrate Stacking: Analysis of Sandwich-like CH/π/CH Complexes

IF 8.5 Q1 CHEMISTRY, MULTIDISCIPLINARY JACS Au Pub Date : 2024-10-14 DOI:10.1021/jacsau.4c0079510.1021/jacsau.4c00795
Laura Díaz-Casado, Enrique Mann, Ester Jiménez-Moreno, Alejandro Villacampa, Laura Montalvillo-Jiménez, Claudia Sánchez-García, Francisco Corzana, Jesús Jiménez-Barbero, Ana María Gómez, Andrés G. Santana and Juan Luis Asensio*, 
{"title":"Opposed Aromatic Surfaces Behave as Independent Binding Sites for Carbohydrate Stacking: Analysis of Sandwich-like CH/π/CH Complexes","authors":"Laura Díaz-Casado,&nbsp;Enrique Mann,&nbsp;Ester Jiménez-Moreno,&nbsp;Alejandro Villacampa,&nbsp;Laura Montalvillo-Jiménez,&nbsp;Claudia Sánchez-García,&nbsp;Francisco Corzana,&nbsp;Jesús Jiménez-Barbero,&nbsp;Ana María Gómez,&nbsp;Andrés G. Santana and Juan Luis Asensio*,&nbsp;","doi":"10.1021/jacsau.4c0079510.1021/jacsau.4c00795","DOIUrl":null,"url":null,"abstract":"<p >CH/π bonds are versatile elements for the construction of complex molecular architectures, thus playing key roles in many biomolecular recognition processes. Although seldom acknowledged, aromatic units are inherently bivalent and can participate in CH/π bonds through either face simultaneously, leading to the formation of <i>ternary</i> stacking complexes. This sandwich-like arrangement is by far the most common in natural complexes and could potentially lead to negative cooperativity due to unfavorable polarization or electrostatic effects, especially when polarized CH fragments are involved. To evaluate the energetics of such interaction modes, we selected a biologically relevant model, <i>carbohydrate/aromatic stacking</i>, and conducted an experimental analysis comparing <i>binary</i> CH/π interactions to <i>ternary</i> CH/π/CH stacking. Our approach utilized a dynamic combinatorial strategy, which is well-suited to reveal minor stability differences among aromatic complexes. Our results showed that carbohydrate/aromatic stacking is relatively insensitive to molecular recognition events occurring on the opposite side of the aromatic platform, whether exposed to water or involved in additional CH/π contacts, with free energy fluctuations lower than 10%. Based on these data, for all practical purposes, the two opposing aromatic surfaces can be considered independent, noninteracting binding sites, making aromatic platforms optimal connecting elements for supramolecular cross-linking.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":"4 11","pages":"4466–4473 4466–4473"},"PeriodicalIF":8.5000,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/jacsau.4c00795","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/jacsau.4c00795","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

CH/π bonds are versatile elements for the construction of complex molecular architectures, thus playing key roles in many biomolecular recognition processes. Although seldom acknowledged, aromatic units are inherently bivalent and can participate in CH/π bonds through either face simultaneously, leading to the formation of ternary stacking complexes. This sandwich-like arrangement is by far the most common in natural complexes and could potentially lead to negative cooperativity due to unfavorable polarization or electrostatic effects, especially when polarized CH fragments are involved. To evaluate the energetics of such interaction modes, we selected a biologically relevant model, carbohydrate/aromatic stacking, and conducted an experimental analysis comparing binary CH/π interactions to ternary CH/π/CH stacking. Our approach utilized a dynamic combinatorial strategy, which is well-suited to reveal minor stability differences among aromatic complexes. Our results showed that carbohydrate/aromatic stacking is relatively insensitive to molecular recognition events occurring on the opposite side of the aromatic platform, whether exposed to water or involved in additional CH/π contacts, with free energy fluctuations lower than 10%. Based on these data, for all practical purposes, the two opposing aromatic surfaces can be considered independent, noninteracting binding sites, making aromatic platforms optimal connecting elements for supramolecular cross-linking.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
相对的芳香族表面是碳水化合物堆叠的独立结合点:三明治状 CH/π/CH 复合物分析
CH/π 键是构建复杂分子结构的多功能元素,因此在许多生物分子识别过程中发挥着关键作用。尽管人们很少认识到,芳香族单元本质上是二价的,可以同时通过任一面参与 CH/π 键,从而形成三元堆积复合物。这种类似三明治的排列方式是迄今为止天然复合物中最常见的,由于不利的极化或静电效应,特别是涉及极化的 CH 片段时,有可能导致负合作性。为了评估这种相互作用模式的能效,我们选择了一个与生物相关的模型--碳水化合物/芳香族堆积,并进行了实验分析,将二元 CH/π 相互作用与三元 CH/π/CH 堆积进行了比较。我们的方法采用了动态组合策略,这种策略非常适合揭示芳香族复合物之间的微小稳定性差异。我们的研究结果表明,碳水化合物/芳香族堆叠对发生在芳香族平台另一侧的分子识别事件相对不敏感,无论是暴露在水中还是参与额外的 CH/π 接触,其自由能波动都低于 10%。基于这些数据,就所有实际目的而言,两个相对的芳香表面可被视为独立的、非相互作用的结合位点,从而使芳香平台成为超分子交联的最佳连接元素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
0
审稿时长
10 weeks
期刊最新文献
Issue Editorial Masthead Issue Publication Information Revealing the Ultrafast Energy Transfer Pathways in Energetic Materials: Time-Dependent and Quantum State-Resolved Mechanistic Insights into Nonadiabatic Interband Transitions on a Semiconductor Surface Induced by Hydrogen Atom Collisions Sequence-Encoded Spatiotemporal Dependence of Viscoelasticity of Protein Condensates Using Computational Microrheology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1