Tao Tan;Xianbin Cao;Fansheng Song;Shenwen Chen;Wenbo Du;Yumeng Li
{"title":"Temporal Link Prediction via Auxiliary Graph Transformer","authors":"Tao Tan;Xianbin Cao;Fansheng Song;Shenwen Chen;Wenbo Du;Yumeng Li","doi":"10.1109/TNSE.2024.3485093","DOIUrl":null,"url":null,"abstract":"Temporal link prediction is fundamental for analyzing and predicting the behavior of real evolving complex systems. Recently, advances in graph learning for temporal network snapshots present a promising approach for predicting the evolving topology. However, previous methods only considered temporal-structural encoding of the entire network, which leads to the overshadowing of crucial evolutionary characteristics by massive invariant network structural information. In this paper, we delve into the evolving topology and propose an auxiliary learning framework to capture not only the overall network evolution patterns but also the time-varying regularity of the evolved edges. Specifically, we utilize a graph transformer to infer temporal networks, incorporating a temporal cross-attention mechanism to refine the dynamic graph representation. Simultaneously, a dynamic difference transformer is designed to infer the evolved edges, serving as an auxiliary task and being aggregated with graph representation to generate the final predicted result. Extensive experiments are conducted on eight real-world temporal networks from various scenarios. The results indicate that our auxiliary learning framework outperforms the baselines, demonstrating the superiority of the proposed method in extracting evolution patterns.","PeriodicalId":54229,"journal":{"name":"IEEE Transactions on Network Science and Engineering","volume":"11 6","pages":"5954-5968"},"PeriodicalIF":6.7000,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Network Science and Engineering","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10735135/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Temporal link prediction is fundamental for analyzing and predicting the behavior of real evolving complex systems. Recently, advances in graph learning for temporal network snapshots present a promising approach for predicting the evolving topology. However, previous methods only considered temporal-structural encoding of the entire network, which leads to the overshadowing of crucial evolutionary characteristics by massive invariant network structural information. In this paper, we delve into the evolving topology and propose an auxiliary learning framework to capture not only the overall network evolution patterns but also the time-varying regularity of the evolved edges. Specifically, we utilize a graph transformer to infer temporal networks, incorporating a temporal cross-attention mechanism to refine the dynamic graph representation. Simultaneously, a dynamic difference transformer is designed to infer the evolved edges, serving as an auxiliary task and being aggregated with graph representation to generate the final predicted result. Extensive experiments are conducted on eight real-world temporal networks from various scenarios. The results indicate that our auxiliary learning framework outperforms the baselines, demonstrating the superiority of the proposed method in extracting evolution patterns.
期刊介绍:
The proposed journal, called the IEEE Transactions on Network Science and Engineering (TNSE), is committed to timely publishing of peer-reviewed technical articles that deal with the theory and applications of network science and the interconnections among the elements in a system that form a network. In particular, the IEEE Transactions on Network Science and Engineering publishes articles on understanding, prediction, and control of structures and behaviors of networks at the fundamental level. The types of networks covered include physical or engineered networks, information networks, biological networks, semantic networks, economic networks, social networks, and ecological networks. Aimed at discovering common principles that govern network structures, network functionalities and behaviors of networks, the journal seeks articles on understanding, prediction, and control of structures and behaviors of networks. Another trans-disciplinary focus of the IEEE Transactions on Network Science and Engineering is the interactions between and co-evolution of different genres of networks.