Improved estimates of net ecosystem exchanges in mega-countries using GOSAT and OCO-2 observations

IF 8.1 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES Communications Earth & Environment Pub Date : 2024-11-25 DOI:10.1038/s43247-024-01910-w
Lingyu Zhang, Fei Jiang, Wei He, Mousong Wu, Jun Wang, Weimin Ju, Hengmao Wang, Yongguang Zhang, Stephen Sitch, Jing M. Chen
{"title":"Improved estimates of net ecosystem exchanges in mega-countries using GOSAT and OCO-2 observations","authors":"Lingyu Zhang, Fei Jiang, Wei He, Mousong Wu, Jun Wang, Weimin Ju, Hengmao Wang, Yongguang Zhang, Stephen Sitch, Jing M. Chen","doi":"10.1038/s43247-024-01910-w","DOIUrl":null,"url":null,"abstract":"Accurate national terrestrial net ecosystem exchange estimates are crucial for the global stocktake. Net ecosystem exchange estimates from different inversion models vary greatly at national scale, and the relative impacts of prior fluxes and observations on these inversions remain unclear. Here we estimate the net ecosystem exchange of 51 land regions for the 2017-2019 period, focusing on the 10 largest countries, using prior fluxes from 12 terrestrial biosphere models and XCO2 retrievals from GOSAT and OCO-2 satellites as constraints. The average uncertainty reduction for the 10 countries increases from 37% with GOSAT and 45% with OCO-2 to 50% with combined observations, indicating a trend towards robust estimates. At finer spatial scales, even with combined observations, the uncertainty reduction is only 33%, i.e., the prior flux dominates the estimates. This finding underscores the critical importance of integrating multi-source observations and refining prior fluxes to improve the accuracy of carbon flux estimates. Choice of ecosystem model and input satellite data has a significant impact on modelled carbon dioxide flux and its associated uncertainty for large countries, according to atmospheric inversions using GOSAT and OCO-2 data.","PeriodicalId":10530,"journal":{"name":"Communications Earth & Environment","volume":" ","pages":"1-10"},"PeriodicalIF":8.1000,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43247-024-01910-w.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Earth & Environment","FirstCategoryId":"93","ListUrlMain":"https://www.nature.com/articles/s43247-024-01910-w","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate national terrestrial net ecosystem exchange estimates are crucial for the global stocktake. Net ecosystem exchange estimates from different inversion models vary greatly at national scale, and the relative impacts of prior fluxes and observations on these inversions remain unclear. Here we estimate the net ecosystem exchange of 51 land regions for the 2017-2019 period, focusing on the 10 largest countries, using prior fluxes from 12 terrestrial biosphere models and XCO2 retrievals from GOSAT and OCO-2 satellites as constraints. The average uncertainty reduction for the 10 countries increases from 37% with GOSAT and 45% with OCO-2 to 50% with combined observations, indicating a trend towards robust estimates. At finer spatial scales, even with combined observations, the uncertainty reduction is only 33%, i.e., the prior flux dominates the estimates. This finding underscores the critical importance of integrating multi-source observations and refining prior fluxes to improve the accuracy of carbon flux estimates. Choice of ecosystem model and input satellite data has a significant impact on modelled carbon dioxide flux and its associated uncertainty for large countries, according to atmospheric inversions using GOSAT and OCO-2 data.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 GOSAT 和 OCO-2 观测数据改进对特大国家生态系统净交换的估算
准确的国家陆地净生态系统交换估算值对全球清查至关重要。在国家尺度上,不同反演模型得出的净生态系统交换估算值差异很大,而先前通量和观测数据对这些反演值的相对影响仍不清楚。在此,我们以 10 个最大的国家为重点,利用 12 个陆地生物圈模型的先验通量以及 GOSAT 和 OCO-2 卫星的 XCO2 检索结果作为约束条件,估算了 2017-2019 年期间 51 个陆地区域的净生态系统交换量。这 10 个国家的平均不确定性降低率从 GOSAT 卫星的 37% 和 OCO-2 卫星的 45% 增加到综合观测数据的 50%,表明了稳健估算的趋势。在更细的空间尺度上,即使采用综合观测,不确定性降低率也只有 33%,即先验通量在估算中占主导地位。这一发现强调了整合多源观测数据和完善先验通量对提高碳通量估算精度的重要性。利用 GOSAT 和 OCO-2 数据进行的大气反演表明,生态系统模型和输入卫星数据的选择对模拟的大国二氧化碳通量及其相关不确定性有重大影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Communications Earth & Environment
Communications Earth & Environment Earth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
8.60
自引率
2.50%
发文量
269
审稿时长
26 weeks
期刊介绍: Communications Earth & Environment is an open access journal from Nature Portfolio publishing high-quality research, reviews and commentary in all areas of the Earth, environmental and planetary sciences. Research papers published by the journal represent significant advances that bring new insight to a specialized area in Earth science, planetary science or environmental science. Communications Earth & Environment has a 2-year impact factor of 7.9 (2022 Journal Citation Reports®). Articles published in the journal in 2022 were downloaded 1,412,858 times. Median time from submission to the first editorial decision is 8 days.
期刊最新文献
Kaolinite induces rapid authigenic mineralisation in unburied shrimps. Carbon dioxide emissions from industrial processes and product use are a non-ignorable factor in China’ s mitigation eDNA offers opportunities for improved biodiversity monitoring within forest carbon markets Weakening of subsurface ocean temperature seasonality over the past four decades Mediterranean marine heatwaves intensify in the presence of concurrent atmospheric heatwaves
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1